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Preface 

The Air Force research labs solicited proposals in 1996 to develop methods to reduce 

interference in broadband communication systems.  A proposal received from Rockwell 

Science Center, authored by John Hong and Tallis Chang, described adaptive acousto-

optic RF signal excision using a novel electro-optic power limiter.  Because of the Air 

Force interest, the topic was selected and supported as an AFRL/SNDI in-house research 

and University of Dayton PhD dissertation project. 
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Abstract 

Adaptive RF interference reduction for broadband communication systems continues to 

be problematic.  The acousto-optic RF signal excision system offers real-time, 

narrowband RF interference, frequency-domain filtering for broadband communication 

systems, but has been limited in its capability for adaptive processing and rejection of 

broadband RF interference.  As a means to reduce these limitations, this dissertation 

examines the application of a novel photorefractive optical power limiting device to 

achieve adaptive notch filtering, and multi-channel acousto-optic deflection to achieve 

angle-of-arrival signal discrimination at the notch filter. 

This dissertation describes basic principles of acousto-optic RF signal excision, 

including linear phased-array antenna, angle-of-arrival processing using a multi-channel 

acousto-optic deflector.  The principles are verified experimentally by demonstration of 

frequency-domain filtering according to frequency and angle of arrival.  This dissertation 

also describes basic principles of photorefractive optical power limiting, which is a new 

approach for achieving adaptive, frequency-domain notch filtering.  Photorefractive field 

shielding of electro-optic birefringence is examined by numerical solution of the band-

transport model, and experimental measurement of notch-filter amplitude and spatial 

profiles for high- intensity, Gaussian-beam optical illumination and high- intensity, 

externally applied electric fields.  Results indicate that for illumination-beam radius 



  xiii 

larger than a few microns, power-limiting notch widths follow the illumination intensity 

and terminate at the dark-to- light illumination interface where excess charge 

accumulates.  Also, when sufficient light intensity is applied, a space-charge field 

develops that will completely screen the externally applied E-O modulator half-wave 

voltage, at which point only a very small diffusion field remains, and the notch-depth 

limit is the extinction ratio of the polarizer-crystal-analyzer combination. 

The theoretical models of the optical power limiting device and acousto-optic RF 

signal excision system agreed with the experimental results to within 18% for the 

frequency-domain, notch-filter width.  The results show that space and time excision of 

interference may be achieved, but the adaptive notch-filter width developed by high-

intensity RF interference can overwhelm the angle-of-arrival resolution when small 

antenna arrays are used. 
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Chapter 1 
 

Executive Summary 

1.1 Background 

A problem with modern RF systems is their vulnerability to interference sources in a 

cluttered RF environment.1  Of particular concern is GPS signal acquisition in the 

presence of RF interference.  Figure 1-1 shows the power levels of high- and low-

performance GPS receivers with respect to a baseline 1-watt interference source.  The 

satellite signal level is -130 dBm when it reaches the earth.  C/A code acquisition 

provides 24 dB of processing gain, and can acquire a signal with -106 dBm or less 

interference intensity.  Thus, a 1-watt interference source can disrupt signal acquisition to 

a distance of about 50 miles.  High performance receivers can achieve 54 dB of 

processing gain, so the same 1-watt interference is only effective to about 1.5 miles.  

Figure 1-1 shows that with an additional 30 dB of interference suppression, a 1-watt 

interference source does not disrupt communications except at very close range.  The 

utility of a device that can provide 30dB interference rejection without seriously 

distorting the desired signal is evident.  One solution is to increase the radiated power of 

the GPS satellites by 30 dB.  Such a power increase will occur with GPS modernization.   

 1 
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Another solution is to add adaptive filtering.  Temporal and spatial adaptive filtering is 

used.  

Earth Signal Level GPS 

24 dB Civilian Spread Spectrum 

0.5 50.0 1.5 100 0.05 

30 dB Adaptive 

dBm - 106

- 76 dBm 

- 46 dBm 

- 130 dBm 

- 106
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54 dB P-Code Spread Spectrum Gain 

Miles 0.5 50.0 1.5 100 

1-Watt Interference 

0.05 

Si
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al
 S

tre
ng

th
 

30 dB Adaptive 

 

Figure 1-1 Effect of 30 dB adaptive filter on range of 1-watt 
interference source. 

1.2 Temporal Filtering 

Narrowband continuous wave RF interference can be removed using time-correlation 

filtering or notch filtering, as illustrated in Figure 1-2.  In this case the desired signal to 

be tracked or recovered is contaminated by a large-amplitude, narrowband RF 

component, which completely precludes valid signal detection or tracking.  The adaptive 

filter must estimate the frequency location of this component and build a notch filter to 

reduce its amplitude.  Digital notch filtering can be used to reject narrowband  
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interference.  A digital simulation of a notch filter communication receiver was 

constructed in order to evaluate different system configurations.  The results, which are 

presented in Section 3.1, Digital Simulation, show that the notch-filtering approach is 

effective for removing all types of narrowband interference, except wideband barrage 

noise. 

f o

transfer function

f o

Transfer Function 
Recovered Signal 

• Estimate & track frequency of interference 
• Adapt notch filter response 

Corrupted Signal 

 

Figure 1-2 Temporal filtering uses a notch-filter transfer function 
to remove interference from corrupted signal. 

An acousto-optic RF signal excision system has potential for providing adaptive, 

real-time narrowband RF interference rejection and is the subject of this research.  A 

brass-board system was constructed in the laboratory in order to test system concepts.  A 

diagram of the setup is shown in Figure 1-3.  A quick explanation of the system follows:   

A laser beam is expanded to illuminate a Bragg cell that deflects the light according to 

the frequency spectrum of the applied RF signal.  The Bragg cell output gives a Fourier 

transform of the RF signal represented by a distribution of light intensity located at the 

focal plane of the lens.  Frequency domain signal processing is achieved since  
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narrowband RF interference is manifest as bright light that can be adaptively attenuated 

by the Electro-Optic Power Limiter (EOPL).  The filtered optical signal is demodulated at 

the detector, using the reference optical beam.  A review of optical signal processing 

theory is presented in Section Chapter 2,Linear Systems and Fourier Optics, and a 

discussion of acousto-optic RF signal excision is presented in Section 3.2 Acousto-Optic 

RF Signal Excision.  Results of experimental demonstrations are provided in Chapter 

5.1.1 Heterodyne RF Spectrum Analyzer.  The results demonstrated feasibility, but 

showed that frequency resolution is hindered by depth of focus issues in the EOPL.  
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Figure 1-3  Acousto-optic RF signal excision system:  Bragg cell RF 
spectrum analyzer, adaptive notch filter, heterodyne detection from [29].  
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1.3 Spatial Filtering 

Notch filtering is ineffective against broadband RF interference.  Figure 1-4 illustrates an 

approach for removing broadband RF interference using Controlled Radiation Pattern 

Antennas (CRPAs).  The signals from each antenna element are phase-shifted and 

combined to produce a composite-gain pattern that places nulls in the directions of the 

interference sources.  The number of spatial nulls that can be formed with spatial filtering 

is limited to N-1, where N is the number of antenna elements in a receiver array.  The 

number of antenna elements is kept low due to computational burden.  While narrow-

band interference is a common occurrence in a cluttered RF environment, broadband 

interference, with its high power requirements, is due to hostile jamming.  To remove 

both types of interference, a combination of temporal and spatial filtering processes is 

desired so that narrow-band RF interference can be eliminated by efficient notch filtering 

without using the few spatial null or gain directions available from the CRPA.  This need 

is compounded by the fact that the GPS receiver must be able to lock on to five or more  
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Figure 1-4 Spatial filter uses CRPA to place nulls in direction 
of RF interference source. 
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satellites located at different positions in space in order to successfully determine a user’s 

position. 

Realizing the advantage a combination of spatial and temporal filtering gives, this 

research effort investigated the use of a multi-channel Bragg cell in the acousto-optic RF 

signal excision system in order to achieve a space-time signal processing capability.  

Figure 1-5 is a conceptual illustration of this approach.  The output of a linear antenna 

array is fed to a multi-channel Bragg cell optical signal processor, which produces a 2-D 

Fourier transform of instantaneous frequency and Angle Of Arrival (AOA) as a physical 

distribution of light at the focal plane of a lens.  This lens is shown in the figure as a 

Holographic Optical Element (HOE).  The figure shows signal frequency represented 

along the vertical axis while signal AOA is represented along an orthogonal horizontal 

axis.  An adaptive notch-filter function can excise high intensity broadband RF 

interference while passing low intensity sources if the AOA separation can be resolved so 

that each RF source does not overlap.  An eight-channel Bragg cell was incorporated into 

the brass-board RF spectrum analyzer.  The results of these experiments are presented in 

Chapter 5.1.3, Angle-of-Arrival Separation Using Multi-Channel Bragg Cell.  The results 

demonstrated the feasibility of AOA filtering, but showed that when a low number of 

antenna elements are used, the AOA notch-filter depth is hindered by the increase size of 

focused spots that occurs for high-intensity beams.  

A novel method for achieving a collinear signal- and reference-beam design to 

reduce phase noise was conceived as part of this research.  The approach uses a dual 

focus illumination beam produced by an HOE, that is not shown in Figure 1-5.  The  
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Fourier transform holographic lens, which is shown, is a potential approach to correct 

higher order diffraction from the multi-channel Bragg cell.  Both concepts were not 

pursued beyond the “idea” stage and are suggested for further study in Section6.2, 

Recommendations for Future Work. 
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Figure 1-5 Proposed approach for space/time acousto-optic RF signal excision.  

1.4 Electro-Optical Power Limiter 

The Electro-Optical Power Limiter (EOPL) is a novel device that has potential to 

improve adaptive notch filtering in optical processing systems.  The main thrust of this 

dissertation is a study of this novel device for acousto-optic RF signal excision 

application.  The EOPL was first reported in 1988.2  The EPOL responds to high-

intensity light by limiting its power.  The basic operation of the EOPL is shown in Figure 
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1-6.  A transverse Electro-Optic (EO) modulator is shown for two modes of operation:  

low and high optical intensity applied to the crystal.  In normal operation the applied half-

wave voltage creates optical birefringence that rotates the polarized optical beam by 90°.  

Ideally, all light passes through an analyzer, which is oriented orthogonally to the input 

polarization.  For the case of high-intensity beams, photoionized charge overcomes 

random thermal current, drifts out of the illuminated region, and collects at a dark edge to 

create a space-charge field that shields the applied voltage.  The EO birefringence is 

reduced, and the beam is attenuated at the analyzer.   

An objective of this research is to characterize the EOPL with respect to its 

suitability as an adaptive frequency plane optical notch filter.  To model the EOPL, the 

photorefractive band transport theory was applied to the crystal configured as an EO  
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Figure 1-6 Photorefractive electric field shielding in EO modulator. 
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amplitude modulator.  The model was then solved numerically.  A discussion of the EO 

and photorefractive processes is presented in Chapter 4.  Results of the modeling are 

presented in Sections 4.3.2 and 4.4.  An experiment to measure the EOPL notch-filter 

width and depth in an acousto-optic RF excision system was performed, and the results 

were found to compared closely to the model.  Experimental results are presented in 

Chapter 5.2, Electro-Optic Power Limiter.  The results indicate that trapped photoionized 

charge can be confined to narrow regions on the order of a few microns at the dark edges 

of illumination, so that electric field spreading is comparable with the optical field 

intensity.  The frequency-domain filter notch width grows in response to the intensity of 

the focused spot and with respect to the dark-intensity threshold, and the notch depth is a 

function of the extinction ratio for the crossed polarizers and photorefractive crystal 

combination, which is -55 to -45 dB using high quality polarizers and a Bismuth Silicon 

Oxide [Bi12SiO20] (BSO) crystal. 



   

Chapter 2 
 

Linear Systems and Fourier Optics 

This section describes the mathematical approach used in this dissertation to represent the 

optical signal processing approach to frequency-domain filtering.  It is prudent to balance 

simplicity and precision when selecting a mathematical model to describe physical 

phenomena. A simplified model must be consistent with the experimental results to a 

degree that achieves utility for analyzing new design implementations, as well as a means 

of better understanding the basic principles involved.  For example, the wave diffraction 

process has accurate differential equation models, but they are difficult to compute.  

Finite element solutions can be used, but the resulting accuracy is not always justified by 

the computational burden required to obtain such accuracy.  The process of simple 

harmonic motion for electromagnetic and acoustic propagation enables a simplified 

mathematical description of these physical phenomena through Fourier analysis and 

linear systems theory, that has been applied particularly well to the analysis of Acousto-

Optic (AO) signal processing systems.  Paraxial approximations and small signals apply 

in most all cases, so that most often the models used in practice involve an analysis of the 

angular spectrum of plane waves for both optic and acoustic signals.  The convenience, 
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usefulness, and popularity of this approach are compelling reasons for using it wherever 

possible. 

2.1 Basic System Concept 

A system analysis involves determining the response of a particular system to a range of 

inputs.  This approach is outlined in Figure 2-1, which shows a system block diagram of 

input function, system transfer function, and output response.3, 4  The system is defined by 

a set of equations, usually second-order differential equations.  By keeping the 

description of the model linear and shift invariant, the analysis is greatly simplified 

through the use of linear systems theory.5, 6  In this case the input is decomposed into a 

system of orthogonal basis functions (Fourier analysis), the system transfer function is 

applied to the input functions, which modifies the amplitude and phase of the input basis 

functions; and the output is obtained by summing the results.  This approach is very 

intuitive because the basis functions are sinusoids and the decomposition is simply the 

signal spectrum.  Figure 1-2 also illustrates this basic approach. 

For many optical materials the well known Maxwell's electromagnetic wave 

equations apply as a set of second-order differential equations with constant coefficients 

that completely describe the propagation of light within the material.  In this case a linear  
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Figure 2-1 Linear system block diagram. 
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systems approach can be applied to analyze optical systems as well as provide a 

framework to develop an intuitive feel for the physical processes involved.  Another 

advantage is the ease with which linear components such as lenses or transducers can be 

incorporated into the system description.  In addition, this approach is useful for 

approximating nonlinear systems by examining small regions where linearity can be 

assumed. 

Fourier analysis is the process of decomposing a complicated input function into a 

spectrum of system eigenfunctions; that is, functions with derivatives proportional to the 

original functions.  Consequently, sinusoidal eigenfunctions are unchanged except in 

amplitude and phase as they pass through a linear and shift invariant system.  By defining 

a system according to a transfer function that describes the system's amplitude and phase 

response to a spectrum of eigenfunctions, an analysis of the system output simply 

involves modifying the amplitude and phase of the input eigenfunctions according to the 

system transfer function.  For filtering systems the transfer function is often described as 

an notch function having a spectral width and amplitude depth.  The phase response, 

described by lead or lag, generates less interest because it often disappears when intensity 

is considered. 

2.2 Plane Wave Eigenfunctions 

In optics an eigenfunction of the propagation equations is recognized as an idealized 

monochromatic plane wave which is given by the complex function  

  t),U( )-tj( rkr ⋅= ωeA  ( 2-1 )
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where time variation is indicated by radian frequency w=2pu=2p/T, with frequency, u 

and time period, T.  Spatial variation is represented by a wave vector k that defines a 

propagation direction, and is given by k = 2p/l(ax+by+gz) = 2p(fxx+fyy+ 222
yx ff −−−λ z), 

where a, b, and g are direction cosines, fx, and fy are spatial frequencies, and |k| = 2p/l.  

The real part of the complex function in Equation ( 2-1 ) is taken to represent an electric 

or magnetic field.  As the name implies, the plane wave has plane surfaces of constant 

phase normal to the wave vector k at any instant t, such that  

 constant- =⋅rktω  ( 2-2 )
   
so that k◊r = 2pq + arg{A}, q being an integer which represents wavefronts comprised of 

planes.  That is, the plane wave phase function traces out wavefronts that are parallel 

planes perpendicular to the direction of propagation, k, and separated by the optical 

wavelength, l.   

Using the plane wave as a basis function, the representation of any space-time 

function can be achieved using the space-time and frequency Fourier transform relations, 

defined as  

 
υγβαυγβα

υλγβα
λ
π

dddde),,,(),,,(
)(2 tzyxj

FtzyxU
−++

∫∫∫=  ( 2-3 )

   
 

.dddde),,,(),,,(
)(2

tzyxtzyxUF
tzyxj υλγβα

λ
π

υγβα
−++−

∫∫∫=  ( 2-4 )

   
Here the representation of any arbitrary space-time function as spectrum of complex 

sinusoidal components (eigenfunctions) is indicated in Equation ( 2-3 ). Equation ( 2-4 ) 

defines the unique spectrum F(a,b,g,u) for the space-time function U(x, y, z, t).  Note that 

the space and time elements of the Fourier transform have opposite signs in the exponent.  
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The sign conventions are chosen so that the direction of propagation and frequency is in a 

positive sense (r = z positive z direction).  Fourier analysis has found wide use in systems 

analysis because of the development of a fast computation algorithm for the Fourier 

transform.  The discrete Fourier transform is described in Chapter 3. 

Because the frequency components are unchanged in a linear system, it is 

convenient to use phasor notation when working with idealized monochromatic plane 

waves by dropping the time dependence in favor of working with just a complex 

amplitude function.  Thus,  

 tj
p eUtU ω)(),( rr =  ( 2-5 )

   
where  

 rrr φj
p )A()(U e=  ( 2-6 )

   
is referred to as the complex amplitude.  The complex amplitude is composed of real 

functions a(r) and f(r) that represent amplitude and phase respectively at position r.  The 

optical frequency, w (known apriori), is now assumed.   

2.3 Angular Spectrum of Plane Waves 

Optical signal processing systems involve the use of amplitude and phase transparency 

functions.  The analysis of these elements is simplified using the concept of an analysis 

plane, an optic axis, and the angular spectrum of plane waves.  Generally, the optic axis is 

chosen to be the z-axis and the electric fields of the light are linearly polarized in either 

the x or y directions.  The variation of light amplitude and phase incident upon an x-y 

analysis plane located at z = 0 can be expressed as a function of only the x and y 
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coordinates.  Equation ( 2-3 ) can be rewritten to combine the complex phase components 

with regard to an (x,y) analysis plane, with propagation indicated along the z-axis such as 

 ( )
,ee),,(),,(

22 zyx γ
λ
πβα

λ
π

γβα
jj

FzyxU
+

=  ( 2-7 )

   
And by choosing z=0, a 2-D phase function results as follows: 

 ( ) ( )yxyx
yx ffj

yx

j
ffFFyxU ++

== πβα
λ
π

βα 2
2

e),(e)0,,()0;,(  ( 2-8 )

   
The spatial frequencies, fx = a/l and fy = b/l have a physical interpretation as the spatial 

period for plane-wave wavefronts that intersect the analysis plane.  That is, a plane wave 

traveling with direction vector k =a/lx, +bly + 221 βα −− /l has wavefronts that 

uniquely intersect the analysis plane according to spatial frequencies fx = a/l and fy = b/l.  

This interpretation is illustrated in Figure 2-2.  The figure shows a reference plane at z = 

0,and a 2-D pattern of lines having spatial separation Lx and Ly (mm/line) that represent 

lines of constant phase for a single plane wave.  The spatial frequency components fx = 

1/Lx and fy = 1/Ly (lines/mm) define a unique angle of propagation for the plane wave as 

indicated by k, where fx defines a unique angle of propagation in the (x,z) plane, and fy 

defines a unique angle of propagation in the (y,z) plane.  If a phase transparency f = 

n1exp[j2p(fxx + fyy)] is illuminated by a plane wave traveling along the optic axis with 

wave vector k = 2p/lz and fx = 0, fy = 0, the plane wave phase will be modulated by the 

spatial components fx = a/l, and fy = b/l, and a propagation component with wave vector, 

k =a/lx, +bly + 221 βα −− /l, is generated. 
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A general amplitude or phase transmission function can be defined as  
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Figure 2-2 Lines of constant phase and spatial frequencies for a 
plane wave. 
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where a multiplication operation in the spatial domain, Uo = tAUi, is implied.  In order to 

apply this function to our system analysis model, Equation ( 2-4 ) is used to obtain a 

Fourier transform of the transmission function.  In the frequency domain, the 

multiplication operation in Equation ( 2-9 ) becomes a convolution operation  

 .),(),(),( yxyxinyxout ffTffAffA ⊗=  ( 2-10 )
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As an example, an A-O modulator can be represented by a sinusoidal phase transmittance 

function.  A bounded transmittance function is required to represent the A-O cell 

aperture.  The transmittance function for an idealized 2-D A-O cell is  

 ),(),(),( yxWyxAOyxA ffTffAffT ⊗=  ( 2-11 )
   
where AAO(fx , fy) represents a spatial phase function in the A-O cell and TW(fx , fy) 

represents the Fourier transform of the aperture function that truncates the plane wave 

illumination.  As is discussed in Section 3.2.1.2, the frequency component fx is associated 

with the RF signal spectrum of ultrasonic acoustic waves created in the A-O cell, and fy is 

associated with the AOA phase offset for each channel in an antenna array.  It should be 

apparent that when illuminated by an optical plane wave, the spatial distribution of phase 

within the transmittance function creates a light component that propagates with unique 

angular spectrum k(fx , fy).  Higher orders can be generated as described in Chapter 3.2.1, 

Acousto-Optic Modulation. 

2.4 Optical Transfer Function 

In the previous section it was shown that input functions to optical systems that have 

been decomposed into a system of sinusoidal eigenfunctions can be interpreted as an 

angular spectrum of optical plane waves.  The optical system transfer function is now 

examined.  A transfer function for free space optical propagation is a well-known result 

obtained by finding solutions to the Helmholtz optical wave equation, The Helmholtz 

equation is derived from Maxwell's equations and applies to time-independent wave 

functions such as those given in Equation ( 2-7 ).  The Helmholtz optical wave equation 

is given by 
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 022 =+∆ UkU  ( 2-12 )
   
where D2 is the Laplacian operator.  Solving for the z dependence using Equations ( 2-7 ) 

and ( 2-8 ) gives the result5 
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λ
π

−−±±
==  ( 2-13 )

   
where the + sign indicates positive propagation.  This result shows the relative phase 

change of the plane wave for propagation over a distance z.  The radical provides two 

fundamental solutions for the cases (lfx)2 + (lfy)2 < 1, which retains a complex exponent, 

and (lfx)2 + (lfy)2 > 1, which gives a real exponent and results in an evanescent wave with 

rapid attenuation. 

When the propagation angles are small relative to the optic axis, Equation ( 2-13 ) 

can be simplified by using the paraxial approximation 1+x ª x/2 for x << 1.  Note that 

the paraxial approximation will always apply to the diffraction angles that are the subject 

of this dissertation.  Applying the paraxial approximation to Equation ( 2-13 ) gives  

 
.ee),(

)0;,(
);,( )(
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22
yx ffzjzkj

yx
yx

yxz ffH
ffA

zffA +−≈= πλ  ( 2-14 )

   
This result shows the phase relationship between the angular plane wave spectrum at the 

input and output analysis planes for free space propagation.  In order to obtain the light 

distribution at the plane of interest, z = z1, an inverse Fourier transform of Az(fx , fy) is 

required.  
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2.5 Fourier Transform Using a Lens 

The plane-wave wavefronts that compose the optical signals converge at infinity so that 

the angular spectrum of plane waves forms a spatial distribution of light that is 

proportional to a Fourier transform in the far field, or the region of Fraunhofer 

diffraction.  Frequency-domain optical signal processing takes advantage of the fact that 

this result is also found at a more convenient location, that is, the focal plane of a 

properly configured lens.  The ideal lens configuration for obtaining a Fourier transform 

is shown in Figure 2-3.  As an example, a truncated plane wave object (an input) placed a 

focal length in front of the lens is imaged at the back focal length of the lens in the shape 

of a sinc function; that is, an exact Fourier transform of the input object.  This result is 

obtained in the following manner.5,7  The relationship between the field at z = d0 and the 

spatial frequency function A0(fx,fy) at z = 0 involves only the phase function for free  
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Figure 2-3 Object position for exact Fourier transform using a positive lens, d0 = f. 
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space light propagation, as given by Equation ( 2-14 ) and repeated here for the case of 

z=d0, 

 .),(),( )(
0

22
00 yx ffdjdkj

yxyxl eeffAffA +−= πλ  ( 2-15 )
   
Using a paraxial approximation, the quadratic phase factor for a thin lens is  

 )(
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=  ( 2-16 )

   
where the lens focal length is f.  The light distribution immediately behind the lens is 

given by 
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An expression for the light distribution at the back focal plane of the lens is obtained 

using the Fresnel diffraction integral, which is given as  
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It is seen that the result contains a Fourier transform of two terms, enclosed in brackets, 

the complex field U(x , h) and a quadratic phase exponential.  The quadratic phase term 

will be canceled exactly by the quadratic phase of the thin lens, as the next step shows.  

By substituting Equation ( 2-17 ) into Equation ( 2-18 ) for z=f, the lens focal length, 

propagation from d0 to the back focal plane of the lens, gives the expression 
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Equation ( 2-19 ) reduces further to 
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which shows that a true Fourier transform is obtained at the image plane when d0= f.  The 

remaining phase term disappears when light intensity is considered.   

The scaling relationships used above between spatial frequency fx and fy and the 

coordinates of the (x,y) analysis plane arise from the direction cosines for the plane wave 

vector k(a, b, g).  A common result in optics is the inverse relation between diffraction 

angle and aperture, sin a = l0/Lx, and this result is seen in the following relationships for 

spatial frequency: 

 
z

yf
z

xf yx λλ
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λλ
α ≈=≈= sin;sin  ( 2-21 )

   
where often the case z= f applies for the lens focal length.  It is evident that the physical 

size of the Fourier transform distribution of light is a function of the lens focal length, 

which, in turn, establishes the system length.  Size is an important criterion for system 

application, and the focal length of the acousto-optic RF excision system cannot be 

picked arbitrarily.  The focal length is dependent on the adaptive filter device used at the 

Fourier transform plane and its (1) capability to resolve optical spatial frequency, and (2) 

requirement for depth of focus to achieve adaptive power limiting.  Another factor 

affecting the size of the system with respect to width and height is the resolvability of the 

frequency components in the (x,y) analysis plane, which is the topic of the next section.  
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2.6 Resolution and Space Bandwidth Product  

A key specification for the performance of a filter system is signal resolution, which is a 

fundamental result of the length of the sample time, or the size of the sample space.  As 

will be shown is Section 3.1, the A-O modulator is an optically addressed, tapped delay 

line which is used to sample an RF time signal f (t) and spatially and temporally modulate 

the signal onto an optical carrier Uo(x,y,z).  The RF signal applied to the A-O crystal 

modulates the refractive index to create a spatial phase distribution function such as 
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where f is an optical phase modulation function proportional to the applied signal, and ua 

is the acoustic velocity.  For example f (t,x) = cos[w(t-x/ua)] is a sinusoidal wave 

function propagating across the crystal, and the time signal with radian frequency w is 

converted to a distribution of spatial frequency with wavelength L = 2pua/w.  As time 

progresses, new sections of the signal are introduced into the object plane that modulates 

the light carrier, and the signal spectrum is obtained as a continuous function of time.  

The sample time of the signal, Dt, is determined by the aperture size X (A-O modulator 

length) divided by the velocity of sound in the crystal ua, given as 
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The conversion of temporal frequency to spatial frequency is a function of the sound 

velocity in the A-O crystal, and the inverse relation shows that a slower acoustic velocity 

increases the sample time for better RF resolution.  The remarkable statement of the 
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uncertainty principle given by the sampling theorem is that the inverse relationship 

between time and frequency Dt = 1∏Dft (or space and frequency Dx = 1∏Dfx) requires that 

the sampling width Dt (or Dx) and resolvability of temporal frequency, Dft (or spatial 

frequency Dfx) cannot be made arbitrarily small simultaneously.  Therefore, to obtain 

smaller resolution of signal frequency requires signal sampling over a larger time period 

Dt (for most practical purposes).  Thus, for a minimum RF signal resolution, D ft, the 

minimum resolvable spatial frequency is 
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where Dfa is the smallest detectable change in the spatial frequency that is displayed 

within the A-O modulator aperture, and a little hand waving gave X = DLa which will be 

discussed further.  The minimum detectable diffraction angle is  
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Figure 2-4 illustrates the principle of the Rayleigh resolution criterion and spatial 

frequency resolution.   The Fourier transform of the rectangular aperture function that 

represents the time aperture for an illuminated phase grating is a sinc function given by 

 ( )xfXX
X
x sincrect ⇔
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  ( 2-26 )

 
 

 

where X is the width of the aperture, and sinc (x) ∫ sin (x)/x.  The Fourier transform of 

the idealized infinite extent phase grating is a Kronecker delta function located at position 

xf = fxlz = lz/Lx where z = f at the focal plane and the distance coordinate at the Fourier 
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 transform plane is designated xf.  The delta function is convolved with the aperture sinc 

function and the result is a sinc function displaced from the center of the z-axis by an 

amount xf.  The Rayleigh resolution criterion states that the minimum resolution between 

two sinc functions occurs when the peak of the second sinc function is aligned with the 

minimum of the first sinc function, as shown in Figure 2-5.  The first minimum of a sinc2 

function occurs at sinc2(1) = 0, so solving for the minimum intensity, Xfx = Xxf-min/lf =1 

gives xf-min = Dxf = lf/X.  Thus, the minimum resolvable spatial frequency is Dfx = Dxf/lf, 

which when applied to Equation ( 2-21 ) gives Dfx = 1/X.   

RF 

N
 * 1/B * u

a  

f 

Rayleigh 
Aperture 
Resolution 
Limit,  Dxf 

Aperture C
 

Dq 

Dxf = lf/C 

 

Figure 2-4 Rayleigh resolution for aperture and acoustic phase grating using a 
lens. 

As an example, the aperture size required to resolve a given spatial frequency 

with 1% accuracy requires Dfx = 0.01 fx = 1/100Lx.  That is, X = 100Lx, or in words , 100 

cycles of spatial frequency must be presented within the aperture to resolve the frequency 

to within 1/100 cycles.   
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Figure 2-5 Rayleigh resolution criterion for sinc function profiles. 

The signal bandwidth, BW divided by the number of resolvable frequencies is the 

number of resolvable spots that can be imaged in the Fourier transform plane, and is 

known as the time bandwidth product 
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The time bandwidth product is a useful measure of resolution for A-O cells.  This 

resolution criterion was used to calculate the collimated beam width for the experimental 

system demonstration as follows:  the spread spectrum communication system has 

bandwidth, BW = 20 MHz, and 0.5% signal resolution, or 200 spots, was desired.  The 

sample time is N/B = 200/20MHz = 10 m sec, and the time aperture is X = Dtua = 10 m sec 
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¥ 0.62 mm/m sec = 6.2 mm, (using TeO2, A-O cell, slow acoustic wave).  Beam 

deflection is a continuous function of the input voltage power spectrum; however, the 

spot width versus deflection distance for a given frequency prevents the resolution of any 

two nearby spectral components by better than BW/200.  As was mentioned at the end of 

the previous section, for notch filtering, the focal length of the lens, f, determines the 

resolvable spot size, 2Dxf = 2lf/C, at the Fourier transform plane and is selected to match 

the spatial resolution limitations of the notch filter.  The photorefractive power limiter 

also has a depth of focus issue, see Equation ( 4-10 ), which is a function of the spot size 

and hence the lens focal length. 

Thus, the working definition for Bragg cell frequency resolution is Df = 1/Dt = 

1/[Bragg cell time aperture], but for notch filtering, the resolution criteria must be 

adjusted to account for the disparity between beam size and intensity.  When signal 

intensity increases by 14 dB, as shown in Figure 2-6, the energy in the side lobes 

increases and washes out the peak of the neighboring spot.  As will be shown in Section 

3.2.3, the optimized system response, H(f), for an optical RF excision systems requires 

Gaussian apodization of the illumination function in order to minimize the energy in the 

sidebands. Also the frequency resolution criterion increases to 3Df for 30 dB excision, 

and 4Df for 40 dB excision.  This effect is also discussed in Section 4.3.2.3 because the 

optical power limiting threshold has a similar response to high-intensity beams.   

The first-order model for an A-O modulator (see Section 3.2.1.1) assumes 

constant phase along the y-axis.  Multi-channel A-O modulators have parallel channels 

that can be used to display phase difference between signals as spatial variation in the y- 
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Figure 2-6 Dt resolution criterion increases with intensity disparity. (a) Sinc 
function, (b) Gaussian function, clipped beam has 14 dB greater intensity. 

axis.  Figure 2-7 illustrates an idealized multi-channel A-O modulator and “effective lines 

of phase” wavefronts (shown by the light-colored lines) that are intended to be consistent 

with the fx & fy spatial frequencies illustrated in Figure 2-2.  The difference in phase, f, 

between each channel, see Equation ( 3-12 ), creates an effective fy component that can 

obviously be resolved into higher orders, as shown in the figure by the second set of 

dashed lines.  Following the procedure outlined thus far, the highest angular deflection at 

the focal plane for the first order phase lines is limited by the width of each channel, af-

max = l/d, and the minimum resolvability of each peak is a function of the total width; that 

is, the number of channels times the width of each channel, N¥d, so that af-min = l/Nd.  

The number of resolvable channels is therefore af-max / af-min = N, the number of channels 

used.  The number of resolvable degrees of phase is 180/N.  The higher orders are 

described in Section 3.2.1.2; however, this simple analysis gave an accurate measure for 

the position of first-order diffraction beams obtained experimentally and shown in Figure 

5-10 through Figure 5-12. 

 27 
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This chapter has provided an overview of the optical signal processor from a 

perspective of linear systems and the angular spectrum of plane waves.  It shows that a 

time signal can be sampled and represented by a spatial frequency spectrum located at the 

Fourier transform plane.  Phase differences between multiple channels, associated with 

linear AOA, can be displayed as a two-dimensional function of spatial frequency.  The 

next chapter discusses how signal filtering is achieved by implementing a notched-

transparency function at the Fourier transform plane that provides amplitude attenuation 

for selected spectral components. 
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Figure 2-7 Linear array antenna phase relationships show effective 
lines of phase and AOA for two orders. 
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Chapter 3 
 

Frequency Plane Filter Signal Excision 

This chapter provides an overview of the frequency domain signal excision process that 

is used to reject unwanted spectral components from broadband signals.  Two signal 

excision approaches are discussed:  digital signal processing and analog optical signal 

processing.  With the advent of high-speed digital processors, digital signal processing is 

a good choice for many applications.  Analog electronic and optical devices are now 

playing supporting roles as hybrid processors that add size and cost and are therefore 

used only where better performance pays.  Time will tell how long this digital advantage 

will last, and what developments will advance the promise of optical processing.  

Because of the flexibility and pervasiveness of digital tools used to simulate 

physical systems, a digital simulation of the acousto-optic RF signal excision system was 

programmed and used in this research to examine the expected performance of the analog 

optical system.8,9  The same key algorithm is shared by the digital and A-O approaches:  

Fourier transform, frequency filtering, and inverse Fourier transform; therefore, a single 

chapter is used to describe both topics. 
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3.1 Digital Simulation 

This section describes a digital simulation of the acousto-optic RF signal excision system.  

The objective of the simulation is to investigate the effects of (1) notch filtering on signal 

integrity (2) a multi-channel Angle Of Arrival (AOA) approach to broadband RF 

interference reduction.   

The digital simulations used to model the signal excision system are similar to 

actual digital filters used in receivers.  In fact, fully software-based receivers are being 

developed.  The single-channel digital computations can be achieved at acceptable speeds 

and are an obvious choice for digital receivers; however, the multi-channel optical 

parallel processor offers a computational advantage with regard to dense narrowband and 

broadband RF interference environments.  

Results of the digital simulation are shown in Figure 3-3 through Figure 3-6.  The 

Matlab“ code10 is provided in Appendix B, along with a more complete description of 

the process involved in writing the code.  The results show that the single-channel, 

temporal notch filter is effective against narrowband RF interference, but not effective 

against broadband interference, where the adaptive filter clips most all frequencies of the 

signal.  The simulations also show that adding a multi-channel AOA capability to the 

temporal filter is effective for rejecting broadband interference. 

3.1.1 Temporal Filter 

Figure 3-1 is a box diagram showing three parts of a spread spectrum digital 

communication system:  transmitter, communications channel, and receiver.  The best 
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Figure 3-1 Block diagram of spread spectrum communications system, from [9]. 

insertion point for the acousto-optic RF signal excision system is at the first Intermediate 

Frequency (IF) of the GPS signal, which is centered at 173 MHz.  This frequency is 

available as an output on some older GPS military receivers.  An optimum Bragg cell 

center frequency is 40 MHz, so further down conversion might be desired to process the 

signal acousto-optically.  The baseband signal has a bandwidth of slightly over 20 MHz.  

These values are represented digitally by a “relative” minimum resolution of [20 MHz 

bandwidth∏200 spots] = 100KHz, and calculations were not actually performed at these 

rates.   

The digital simulation was constructed using discrete models of each system 

component, most of which are shown in Figure 3-2. The following components were 

modeled:  (1) An input signal is represented by a unique PN sequence of amplitude ±1, 

mixed with sinusoidal interference, resolvable to 200 frequencies. (2) The Bragg cell time  
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sampling is represented by a tapped delay line long enough to resolve the highest 

sinusoidal frequency.11 (3) The Fourier transform provided by the Bragg cell deflection & 

optic lens is represented by a discrete Fourier transform operation. (4) The EO power 

limiting is represented by a logic function.  (5) Heterodyne detection and inverse Fourier 

transform is represented by summing all the signal frequency components. (6) Receiver 

decoding is represented by a correlation operation, and the correlation coefficient was 

used to assess the effectiveness of the interference rejection. 
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Figure 3-2 Discrete model for temporal filter; N-tap delay line, discrete Fourier 
transform, adaptive filter algorithm, summing amplifier. 

In order to simulate real-time sampling, the code+interference is input into the n-

tap delay line one bit at a time.  The RF spectrum of the input signal is obtained using the 

Discrete Fourier Transform (DFT) operation that is part of the Matlab package.  The 

frequency resolution for the DFT operation is consistent with the time aperture 
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requirements (number of illuminated grating lines) of the Bragg cell.  At each time step 

that the input signal is clocked into the tapped delay, a DFT is taken of the N bit 

sequence.  The DFT represents the Fourier transform plane of the optic lens where the 

frequency filter is placed.  Matlab computes the DFT of a length N vector x(n) 

accordingly: 
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where X(k) is an N length vector.  Though not used in this simulation, the inverse DFT is 

given by 
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The E-O power limiter is modeled by a subroutine called nonlinear.  Each 

frequency component from the Fourier transform is examined by the subroutine and 

modified according to the power limiting transfer function:  maps one-to-one unless a 

value X0 is exceeded, values that exceed X0 are attenuated according to intensity, Yout(i) 

= X0
2¥Yin(i)∏Yin(i)2, the bigger Yin(i) gets the smaller Yout(i) becomes.  A function that 

accounts for analyzer leakage at the polarizer extinction ratio limit, xp = X1, is included in 

the logic:  Yout(i) = (X0
2/X1

2)¥Yin(i).  After the logical filter operation, the filtered time 

signal is recovered for each “real time” step by summing all frequency components.  The 

effectiveness of the filtering is determined by correlating the recovered signal with the 

original PN code.  Figure 3-3 shows the effect of frequency filtering on the ability to 

correlate a known PN sequence that has been corrupted with four narrowband 

interference components.  The correlation plot gives the correlation coefficient for each 
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time value of the signal, and the peak occurs at the position where the signal PN and 

stored PN code matched in time.  In the figure, the filtered output shows that the ±1 

signal amplitude levels were recovered by filtering, while the unfiltered output is 

identical to the “noisy” signal.  The correlation plot for unfiltered signal shows no 

correlation peak, while the filtered signal had almost exact correlation.  The filtering 

operation was repeated as more and more high intensity spectral components were added.  

Figure 3-4 shows a plot of the correlation coefficient versus the number of frequency 

bands that were intense enough to trigger filtering.  Note that without filtering, a single 
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Figure 3-3 Digital simulation results for temporal filter:  noisy signal, power 
spectrum, filtered & unfiltered output, filtered & unfiltered correlation. 
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high intensity spectral component prevented correlation; however, with filtering 10% of 

the band is filled before a noticeable decrease in the correlation coefficient occurs, and 

over 50% of the frequency band can be filtered before a significant degradation of PN 

sequence correlation occurs.  The "Not Filtered" plot was only carried out for 15 cases.  

The plot in Figure 3-4 was done to examine the effect of broadband interference on a 

spectral compression filter.  Two different models for the power compressor were 

investigated:  (1) completely blocking the signal and (2) power limiting while preserving 

phase.  There was no difference between these two models as shown by the two lines 

plotted in the lower graph.  
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Figure 3-4 Correlation versus spectrum bands filled by high 
intensity components. 
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3.1.2 Spatial Filtering Model 

The digital simulation was expanded to demonstrate the feasibility of AOA signal 

processing.  A second orthogonal dimension to the Fourier transform plane was added to 

the original digital simulation.  The results showed that with AOA separation and 

rejection, broadband interference could be eliminated.  The key to a successful model 

was constructing a time signal having the proper AOA information.  The AOA phase 

delay in each channel is θ
λ

πφ sin
2

d
RF

= , where d is the antenna spacing, and q is the 

AOA.  For a given antenna spacing, d, and signal source direction, θ, a unique phase 

delay is determined for each frequency component of the time signal, 2p/lRF_n, where 
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Figure 3-5 N-1 discrete resolvable angles of arrival used in digital 
simulation 
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n = 1:128.  Constructing a time domain signal with the proper AOA phase information 

required that the signal be constructed in the frequency domain by adding the appropriate 

phase delay to each of the 128 frequency components in the signal bandwidth, then using 

an inverse Fourier transform to get the time signal.  Figure 3-5 shows each of the 15 

resolvable AOA possible for a 16-channel array (seven different angles, two different 

quadrants) for a single-frequency time signal, 2p/lRF, (1 out of a possible 128).  The 2-D 

DFT array size was [256X16]. 
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Figure 3-6 Digital simulation results for spatial filter:  Noisy signal, power 
spectrum, filtered & unfiltered output, filtered & unfiltered correlation. 
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Figure 3-6 shows the results of the 2-D simulation.  The AOA filtering 

successfully removed broadband noise.  The noisy signal and its power spectrum are 

shown on the left hand side.  Note that the power spectrum shows two peaks, but there is 

width associated with each peak, an indication that unresolvable sinusoids were used for 

the interference components, a condition that prevented recovery of the signal using just 

the frequency filtering described earlier (an easy way to construct a noisy signal).  The 

filtered and unfiltered reconstructed signals are plotted, as well as the results of 

correlation between the original PN code and the filtered reconstructed signal, and 

correlation between the original PN code and the unfiltered reconstructed signal.   

3.2 Acousto-Optic RF Signal Excision 

The advantage of optical signal processing lies in the parallel nature of light that allows 

processing of many hundreds, if not thousands, of complex operations simultaneously.  

For example, the signal time sample, Fourier transform, excision of unwanted frequency 

components, and inverse Fourier transform all occur virtually simultaneously in real time 

using a Bragg cell, lens, optical spatial filter, and heterodyne detector.  The drawback of 

an optical system, to date, has been the inefficiency of converting electrical signals to the 

optical domain, modulation of the optical signals by other optical or electrical signals 

according to (1) real time input, (2) electronic feedback, or (3) stored memory, and then 

converting the optical result back to the electrical domain for further electronic 

processing, storage, or display.  In spite of these difficulties, it is the potential of parallel 

optical signal processing that still generates interest for research and development of 

novel improvements.   
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This section describes the components for an analog optical version of the 

frequency domain signal excision system discussed in the previous section.  The A-O 

modulator used to obtain a power spectrum of the RF signal is described in Section 3.2.1.  

The frequency plane notch filter system response is discussed in Section 3.2.2. 

3.2.1 Acousto-Optic Modulation 

The optical output of an Acousto-Optic (A-O) modulator is a power spectrum of an input 

RF signal.  This signal transform operation, which is difficult to achieve in other ways, 

allows the exploitation of many types of frequency-domain optical signal processing.  

After the first demonstration of A-O diffraction in 1932, it took the development of the 

laser in the 1960’s to revive interest in acousto-optics as a means of spatially modulating 

coherent light by electrical signals in order to take advantage of optical signal processing 

techniques.  A-O modulators continue to be an important optical device, in spite of its 

potential for nonlinear diffraction at high-modulation intensity that limits the spurious-

free dynamic range.  Also when considering spread spectrum pseudo-random noise 

signals, the drive power requirements are relatively high.  Advantages are extremely large 

bandwidth capability of hundreds of megahertz, high throughput, and low cross talk 

between channels.  Acousto-optics has a rich history of academic and technological 

development, and there are a number of excellent texts and articles that one can refer to 

in order to supplement the brief introduction contained in this chapter.12, 13, 14 

3.2.1.1 Single-Channel Acousto-Optic Modulator 

An A-O device consists of a transparent crystal optimized for photoelastic and A-

O quality.  See Table 3-1 for a listing of some popular A-O material characteristics.  In 
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addition to the crystal, a piezoelectric transducer is cut to vibrate in a longitudinal 

(compressional) mode and bonded to the crystal so that application of an RF signal will 

mechanically vibrate and launch into the crystal an acoustic pressure wave that 

propagates through its length.  The result is an ultrasonic delay line that has a sample 

time given by the length of the crystal divided by the acoustic speed Dt = L/ua (signal 

duration within the illumination aperture). 

There are two modes of A-O modulator operation:  thin phase diffraction (Raman-

Nath), which results in multiple diffractive orders, and thick phase diffraction (Bragg), 

which results in a high-efficiency single diffraction order.  The Bragg cell is typically 

used for RF spectral analysis and laser beam deflection..  Figure 3-7 is a descriptive 

illustration of an A-O modulator operating in the Bragg mode.  Plane wave illumination, 

E(t,r) = Re{Aexp[j(wlt-k◊r)], and the sound field propagating in the crystal, s(t) = 

Re{Aexp[j(wat-K◊r)]}, are shown as rays having wave vector |k| = wl/c = 2π/l and |K| = 

wa/ua= 2π/L, respectively.  The two fields can only interact for a particular value of the 

incident angle, qB, known as the Bragg angle, which is given by the relation  
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where n is the crystal index of refraction, ua is acoustic velocity, and c is the free space 

velocity of light.  A very simple description of the A-O interaction between light and 

sound is given by the particle model for Bragg diffraction, which is a statement of the 

conservation of energy.15  The light wave consists of photons having particle momentum, 

m = hk/2π, and the sound wave phonons having particle momentum, m = hK/2π, where h 
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is Plank’s constant.  Conservation of momentum in a collision requires that either a 

phonon is annihilated, as in k¢ = k + K, where light momentum is shifted toward the 

direction of sound travel, as shown in Figure 3-7, or a phonon is created, as in k¢ = k – K, 

where light momentum is shifted in the opposite direction of sound travel.  Similarly, 

conservation of energy, (E = hu), in a collision requires that either a phonon is 

annihilated, as in wl
¢ = wl + wa, and the light frequency is upshifted by an amount equal to 

the frequency of the applied RF signal, or a phonon is created, as in wl
¢  = wl - wa, where 

the light frequency is downshifted.  The A-O frequency shift can also be described by a 

Doppler effect.   

Three principal diffracted beams are shown in Figure 3-7, which represent the 

lower, upper, and center frequencies of the Bragg-cell bandwidth .  It should be noted that 

a wide diffraction bandwidth is desired for use in signal processing, but the simplified 

Bragg theory presented here predicts only one optimum diffraction angle; however, the 
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Figure 3-7 Acousto-optic Bragg deflection.  Wave vectors conserve momentum. 
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finite width of the transducer and sound wave diffraction in the crystal provides an RF 

bandwidth for a given Bragg angle in isotropic crystals.  In practice, large bandwidths are 

achieved by crystal anisotropy, which allows conservation of momentum to be satisfied 

over a larger range of acoustic frequencies than for isotropic crystals.  Thus, anisotropic, 

A-O materials, such as TeO2, have advantages for high RF bandwidth; slow acoustic 

speeds give better signal resolution; and high refractive index gives larger efficiency.   

First-order modeling of the phase function within the crystal ignores sound wave 

diffraction, so the acoustic beam has constant width in the x-direction and no variation in 

the y-direction.  Any index variation in the y-direction is assumed to occur only between 

separate Bragg cell channels, as shown in Figure 2-7.  A voltage signal, s(t) = 

Re{Aexp[j(wat)]}, applied to the transducer causes linear oscillation according to the 

input signal's frequency and magnitude, creating an acoustic wave that propagates along 

the length of the cell.  The acoustic wave compression and rarefaction modulate the 

crystal refractive index due to the photoelastic effect and create a dynamic phase grating 

that can be expressed in terms of an amplitude transmittance function  
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where represents the input electrical signal, s(t), scaled to the proper acoustic field 

units, and 

)(ˆ ts

λ
π Dn12  is a phase modulation factor involving constants n1 = maximum index 

perturbation, ua = acoustic velocity, l = optical wavelength in free space, and D = 

transducer width in the z-direction.  The two rectangular functions define the finite 
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aperture.  It should be pointed out that Equation ( 3-4 ) indicates that the refractive index 

change is proportional to the sound amplitude given by . )(ˆ ts

Figure 3-8 shows the distribution of optical intensity at the focal plane of a lens 

for optic illumination of a thin phase grating function, such as ta in Equation ( 3-4 ), 

located at the object plane.  The plots were obtained using the beam propagation software 

program GLAD.16  In Figure 3-8(a) the phase function, ta, where = cos[w),(ˆ xts a(t-x/ua)], 

is illuminated by a plane wave that produces peaks having a sinc function width 

determined by the array size that defines the illumination function.  Note that the multiple 

orders, characteristic of Raman-Nath diffraction, are generated because ta is a phase 

function, whereas an amplitude grating would generate only a zero and ±1 orders.  The 

lower plot is the same phase transmittance function, ta, illuminated by a truncated 

Gaussian beam.  This illustrates the use of a Gaussian apodization function to reduce 

sidelobes in the Fourier transform plane. 

Accurate determination of the relative intensity of the various scattered orders for 

thin A-O phase gratings is given by the well-known Raman-Nath solution  

 [ ]2)(νnJ=
inc

n

I
I

 ( 3-5 )

  
where Jn is the nth order Bessel function of the first kind, and n is the sound-induced peak 

phase shift (Raman-Nath parameter) given as  

 SCDnD ′=∆= kkν  ( 3-6 )
  
where k is the light propagation constant, D is the crystal width, C¢ is the real materials 

constant such that s  = C)(ˆ t ¢s(t), and S is the amplitude of the sound field.14  In addition,  
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Figure 3-8 Fraunhofer diffraction for sinusoidal phase transmittance 
function; (a) plane wave illumination, (b) Gaussian beam illumination. 
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the intensity distribution of light at the focal plane of a lens (Fraunhofer region) for an 

illuminated sinusoidal phase grating is well known and is given by5  
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where fa is the frequency of the phase grating, wx and wy are the aperture widths, and z = f 

is the position of the analysis plane at the lens focal length. 

Generally a single diffraction order with high diffraction efficiency is desired, and 

this is achieved by using volume phase gratings.  Volume effects suppress the higher 

orders seen in Figure 3-8 and increase the efficiency of the remaining diffractive order, 

usually either ±1st.  The Klein-Cook parameter  
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2
Λ

= D
n

Q λπ  ( 3-8 )

  
is a measure of the relative amplitude of the diffractive orders and is directly proportional 

to the transducer width, D.17  A value Q < 1 indicates the A-O modulator is operating in 

the Raman-Nath regime, and a value Q > 7 indicates the A-O interaction is operating in 

the higher efficiency Bragg regime. 

A reasonable measure of first-order diffraction efficiency for the case of low 

modulation index is obtained by an efficiency parameter  
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where p is the photoelastic coefficient, r is the mass density, ua is the acoustic velocity, D 

is the width of the transducer, H is the height of the transducer, Pa is the acoustic power, 
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and 
3

26
0

ρυ
pn  is the A-O figure of merit.18  The efficiency parameter defined by Equation ( 

3-9 ) can be used to show that the amplitude of the diffracted light, [Id]½, is linearly 

proportional to the input voltage, Vs = [Pa]½, applied to the transducer.  Exact calculations 

for diffracted light amplitude in thick phase gratings with high index modulation require 

use of the coupled-mode theory for optic diffraction. 

The coupled-mode theory is used to obtain exact diffraction efficiencies for 

various types of volume gratings with respect to the particular illumination angle and 

wavelength.14, 19, 20  When applied to the analysis of A-O phase gratings, a Doppler shift 

must be added to the results in order to account for the frequency shift of the light due to 

sound interaction.  For the condition of illumination at the Bragg angle of incidence and 

thick gratings, the coupled-wave theory assumes that only two waves need to be 

accounted for in the grating:  the incident wave entering at the Bragg angle and the wave 

diffracted at twice the Bragg angle, as these two waves are not severely attenuated by 

violation of the Bragg condition.  Their interaction in the grating is described by the 

scalar wave equation, and the analysis defines a coupling constant and coupled wave 

equations that give the interaction between the incident and diffracted waves.  The result 

is that a transfer of energy between the two waves causes a periodic rise and fall of 

energy between them according to the interaction length of the thick grating.   

The transfer of energy between the incident and diffracted wave is shown in 

Figure 3-9.  The plot was obtained using GLAD beam propagation software to model 

illumination of the same phase grating, ta, used in Figure 3-8, but the illumination was 

incident at the calculated Bragg angle, and to simulate the volume grating optical  
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Figure 3-9 Simulated energy transfer between zero- and first-order 
diffraction in angular space. 

transmission was calculated over a number of individual small steps in order to propagate 

through the total length, (z = 0 to z = L), of the Bragg cell.21, 22  The light intensity across 

the aperture was plotted for each propagation step.  As the incident beam, IB_inc, 

propagates through the phase grating, energy is coupled into the Bragg diffraction beam, 

IB_diff.  The Bragg angle was 3.2°, the wavelength was 850 nanometers, and the maximum 

refractive index variation was 0.0011.  Note that the angular separation is twice the Bragg 

angle. 

Figure 3-10(a) illustrates light intensity distribution for Bragg diffraction.  The 

Gaussian beam illumination and aperture function are the same as in Figure 3-8(b).  In 

practice, slight alignment of incident light into the Bragg cell will optimize the Bragg 

angle for diffraction into either the negative or positive order, and the figure simply 

combines both orders.  Figure 3-10(b) was obtained applying the Matlab discrete Fourier  
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Figure 3-10 Bragg diffraction:  (a) Light intensity for thick grating beam 
propagation model, Gaussian beam illumination. (b) Discrete Fourier transform 
of phase grating.  

transform to the phase grating used in the GLAD“ plots.  It shows that the Bragg 

diffraction in part (a) is a Fourier transform of the grating.  The difference in amplitude is 

due to mismatches in modulation index, and the width is consistent with Figure 3-8(a), a 

function of the sampled array space.  

Solving the coupled wave equations gives exact diffraction efficiency for thick 

phase transmission gratings for any incident angle, but when the Bragg condition is 

achieved, maximum diffraction amplitude is attained and the results of the coupled wave 

equations are simplified.  In this case, the diffraction efficiency is 

 
)(cos

sin 12

Bragg
Bragg

Ln
θλ

πη =  ( 3-10 )

  
where L is the interaction distance within the grating, and n1 is the index modulation.  

The maximum diffraction efficiency is reached when F=p/2, and the interaction distance 

becomes  
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Bragg cells should be operated in the small-signal regime in order to avoid inter-

modulation products associated with high-intensity optic diffraction, so generally the 

small signal approximations given in Equation ( 3-9 ) apply. 

Table 3-1 Acousto-optic material characteristics 

Material 

 

 

Optical 

Range 

microns 

Refractive 

Index 

 

Acoustic 

Velocity 

Km/sec 

Figure of 

Merit 

¥10-15 m2/W 

Bandwidth 

(3dB) 

MHz 

Lithium Niobate fast 

slow 

0.6 – 4.5 2.2 6.6 

3.6 

7 

15 

1000 - 15000 

Tellurium Dioxide fast 

slow 

0.4-0.6 2.25 5.5 

0.62 

1000 

34 

40 - 200 

Indium Phosphide 1.0 – 1.6 3.3 5.1 80 50 - 300 

Germanium 2.0 – 12.0 4.0 5.5 180 30 

Gallium Phosphide 0.59 – 10.0 3.3 6.3 44 100-1000 

 
3.2.1.2 Multi-Channel Bragg Cells 

The temporal excision filter was shown to be effective against all types of 

interference except wideband barrage noise.23, 24, 25  In this case the filtered signal is 

degraded, because all frequencies which make up the signal can be affected either by 

overwhelming due to interference or excess spectral excision.  Wideband barrage noise is 

the obvious choice for hostile jamming, but it requires more power, whereas narrowband 

RF interference has a more common occurrence as the inadvertent product of a cluttered 
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RF environment.  Effective spatial filtering as shown in Figure 1-4 uses phased-array 

antennas to sample the spatial domain and filter according the location of the source.  

Because a combination of temporal and spatial filtering is desired, the additional 

processing capacity of multi-channel Bragg cells is being considered.  Multi-channel A-O 

devices have been used for processing phased array signals, and investigating this 

approach as a potential means of countering the broadband RF interference became a 

goal of this research. 

A linear antenna array is illustrated in the upper-left portion of Figure 3-11.  The 

signal that reaches the receiving antenna is located a distance from the receiver so that it 

has the form of a traveling plane wave arriving from angle qAOA.  The phase delay 

between each element of the antenna array is given as 

 
AOAr

c

d θ
λ
πφ sin2=  ( 3-12 )

  
which contains a term for the location angle of the source, qAOA.26  Electronic processing 

of the phase information contained in the ensemble of N signals received at each element 

of the array requires phase delay to optimize the signal gain.  However, the AOA is 

unknown, so all angles of interest must be processed individually.   

Processing the ensemble using a multi-channel, Bragg cell and Fourier transform 

lens creates simultaneously a frequency spectrum and off-axis, azimuthal displacement 

that is proportional to the direction of arrival for each signal source received.  This 

represents a tremendous computational advantage over electronic processing.  However, 

this approach does not allow active positioning of the antenna’s gain peak within the  
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Figure 3-11 Multi-channel Bragg cell phase grating and beam forming at the 
Fourier transform plane.  

antenna field of view, which is obtained at the cost of electronic processing and actively 

delaying phase. 

The complex phase transmission function of the multi-channel array, which was 

described earlier in Section 2.6, is also illustrated in Figure 3-11.  The spatial frequency 

due to the RF spectrum, fx, is represented vertically, x-axis, and the spatial frequency due 
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to the phase difference between channels, fy, is represented horizontally, y-axis.  

Recalling Equation ( 3-4 ), the amplitude transmittance function for the single-channel 

Bragg cell, a similar multiple-channel expression is  
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To obtain this expression the AOA phase term for each channel, f, was included in the 

term for the traveling sound field; that is, ),,(ˆ φxts .  For each channel, the aperture 

function for the width, d, and position, (y-nd), is accounted for by the second rectangular 

function. 

The two-dimensional Fourier transform of the amplitude transmittance function 

gives the optical amplitude distribution at the focal plane of a lens, and is given by27   
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The 
)(sin
)(sin

φπ
φπ

+
+

y

y

f
fN  function is displaced off axis by the phase difference between each 

channel, and is multiplied by the wider of the two sinc functions that is due to the Bragg 

cell width, D.  The narrower sinc function due to the Bragg cell aperture length, L, is 

shifted by the carrier frequency phase function, 1/Lc.  Experimental results for AOA 

phase shifting are shown in Figure 5-11. 

3.2.2 Heterodyne Detection 

This brief review of heterodyne detection follows the excellent descriptions contained in 

references [29 & 38].  Photodetectors are insensitive to optical phase and therefore cannot 
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detect the optical frequency modulation of the A-O diffracted beam.  In order to recover 

the RF signal, the beam is mixed with a phase-coherent optical field, and the resulting 

phase interference (called beating) creates amplitude variations that a photodetector can 

detect.  This detection technique is called optical heterodyne or coherent optical 

detection.  Figure 3-12 diagrams a heterodyne detection setup that uses a beam splitter to 

mix the two beams.  Misalignment between angle of incidence on the detector or 

mismatched polarization between the two waves reduces or washes out the interference 

(or cross-product) term.  For this reason polarized fiber-optic couplers provide excellent 

heterodyne detection results, because the interaction between reference and signal beams 

occurs in a coupled-fiber waveguide.  A disadvantage of fiber coupling is the difficulty of 

matching the path lengths of the signal and reference beams when using lasers with short 

coherence lengths.  The stringent requirements for heterodyne detection are well known.  

See for example reference [29]. 

In the RF excision system, the axial position of the photodetector is of no 

consequence, and heterodyne detection can be done anywhere after the signal and 

reference beams have been combined.31, 29  That is, the optically modulated RF signal can  
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Figure 3-12 Diagram of heterodyne detection setup using beam 
splitter. 
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be detected just behind the filter by summing all spectral components at the Bragg cell 

frequency plane or by using point detection at a Bragg cell image plane.   

An equation for the heterodyne-detected signal is obtained by taking the absolute 

square sum of the complex amplitudes of each beam.38  The result is given as  

 ( ) ([ ].cos2222)()(
RSRSRSRS

tj
R

tj
S tAAAAeAeA RS φφωωωω −+−++=+ )  ( 3-15 )

  
Note that optical light intensity components |AS|2 + |AR|2 contribute to the photocurrent, 

but not the cross-product term.  These DC terms can be filtered.  The cross-product term 

varies as the cosine of the difference between the two optical frequencies, which in this 

case is the frequency applied to the Bragg cell.  It contains the desired magnitude, 

frequency, and phase information, g(t) = |AS|2 |AR|2 cos(wRFt + f).  The intensity of the 

reference beam becomes an amplification term.  It can be made large in order to provide 

gain, and heterodyne detection is a common means of amplifying weak signals as well as 

reducing the carrier frequency.   

To show that the detected signal, g(t), is directly proportional to the signal that 

drives the Bragg cell, the following expression gives the form for the heterodyne-detected 

output of an RF spectrum analyzer: 

 )]2/(2cos[)()()( 00 ttftsxatg RF ∆−−= πτ  ( 3-16 )
  
where f(t) = s(t)cos(2pfRFt) is the signal applied to the Bragg cell, s(t) is the baseband 

signal, cos(2pfRFt) is the RF carrier, the time delays are proportional to the Bragg cell 

transit time (time aperture), Dt, and t0 = Dt + x0/ua is a time delay dependent on the 

position of the equivalent reference-beam probe position, x0, at the Bragg cell (see red 

dashed line on Figure 1-3, reprinted below as Figure 3-13).  Finally, an amplitude 
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weighting function, evaluated at x0, includes the illumination function, attenuation 

factors, optical intensity, and Bragg cell truncation. 

3.2.3 Acousto-Optic RF Signal Excision 

The acousto-optic RF signal excision system given in Figure 1-3 is reprinted below as 

Figure 3-13.  This optical processing technique has been studied extensively over the last 

20 years.28, 29, 30  RF signal excision expands upon the heterodyne RF spectrum-analyzer 

architecture by excising undesirable interference at the frequency plane.  The RF 

spectrum analyzer is a well-known means of analyzing the spectrum of an RF signal and 

has a 100% probability of intercept.  The architecture is identical to Figure 3-13, except 

that an array of detectors is positioned at the Fourier transform plane.  Heterodyne 

detection at each detector in the array functions as a channelized receiver.  The total 

signal is recovered by summing the output, and signal excision is achieved by a special 

photodetector array that will switch each detector element to one of two summing buses.  

High intensity interference is switched to one bus, low intensity signal to another, and in 

this way, both signals are available for further processing.  Another approach uses spatial 

light modulators to block light at the Fourier transform plane.  Spatial light modulators 

have on-off contrast ratios on the order of 30 dB.  Both approaches require electronic 

feedback in order to determine the frequency location of the RF interference and 

programming to switch appropriate channels.31, 32, 33  To streamline the process, adaptive 

spatial light modulators are desired that automatically attenuate optical intensity above a 

predetermined threshold.  Photorefractive optical power limiting devices appear suitable 

for this purpose.35,34 
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3.2.3.1 Notch-Filter Function 

A notch filter can remove the narrowband RF interference depicted in the 

spectrum of the 20 MHz wideband, spread-spectrum communication channel represented 

in the lower portion of Figure 3-13.  In this figure, the RF spectrum is now shown by the 

optical intensity function, I(fx) at the Fourier transform plane, rather than the temporal 

frequency function applied to the Bragg cell, as was depicted in Figure 1-3.  Removal of 

the high intensity component is accomplished by a spatial-filter function, H(fx), that 

provides an opaque notch at the position of the high-intensity beam.  As was shown in 

Section 2.4, and Section 3.2, the signal spectrum is represented in the Fourier transform 

plane by an aperture weighting function, A(fx), convolved with a Kronecker delta  
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Figure 3-13  Acousto-optic RF signal excision system.  Lower plots show 
spatial frequency in region of Fourier transform plane.  
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function that shifts the position of the aperture function, A(fx), proportional to the signal 

power spectrum.  Recall that A(fx) is a convolution of the Bragg cell aperture and the 

illumination amplitude distribution, and that in order to maximize the frequency 

resolution the aperture should be as large as possible, and a Gaussian apodization 

function is used in order to maximize the excision notch depth.  The system response is 

obtained by sweeping A(fx) over the entire passband of the system and plotting the 

magnitude of the output signal, g(t), as a function of input frequency.  The cross-product 

term of the heterodyne detector is  

 


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++ xxxxx dffPfHtfRtfItg )()(),(),(Re2)( 2*  ( 3-17 )

  
where P(fx) is the photodetector response,  is the reference signal, I),(* tfR x+ +(fx,t) is the 

signal (interferer) response and H(fx), is the filter transmittance function, squared, 

because it is applied to both the signal and reference functions.  Note that the phase 

response of the notch-filter function is eliminated because both the reference and signal 

pass through it, and, in fact, this occurs everywhere the two beams share identical paths, 

showing the importance of using a collinear architecture. 

The reference beam is a phase signal given by  

 ,),( 02 xfj
x

xetfR π=+  ( 3-18 )
  
and the signal (interferer) response is given by  
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Substituting these expressions into Equation ( 3-17 ) gives  
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It is seen that the output signal has the same frequency content as the input, and its 

amplitude is the convolution of the notch filter function and the Fourier transform of the 

weighting function, with its associated exponential multiplier that indicates the position 

of the reference-beam probe.  Convolution is a smoothing operation that adds the width 

of each function.  

3.2.3.2 Collinear-Beam Design 

The Mach-Zehnder implementation is modified by collinear architectures to 

reduce microphonic-induced phase noise.  Erickson [32] proposed the holographic 

architecture illustrated in Figure 3-14.  A holographic optical element (HOE) redirects 

part of the undiffracted beam to function as a reference beam.  However, this approach 

causes the reference-beam power to fluctuate with the signal power, so generally the 

undiffracted beam should not be used as a reference beam.  A better approach uses 

collinear propagating beams that are separated from the single laser beam prior to the 

Bragg cell.  Various methods have been proposed to achieve a collinear interferometer,  
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Figure 3-14 Collinear architecture for acousto-optic RF signal excision. 
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and a simple approach became apparent for the multi-channel Bragg cell.  However, the 

idea was not tested or modeled and is discussed in Chapter 6 as a recommendation for 

further study.   



   

Chapter 4 
 

Electro-Optic Power Limiter 

The promise of optical computing can be realized by the successful development of 

processes for optical control of optical signals.  In early 1980 Erickson noted in his work 

with the acousto-optic RF excision system that adaptive excision of narrowband RF 

interference in broadband communication systems could be achieved by using an optical 

power limiter that passed low-intensity light but attenuated high-intensity light.32  

Research to develop optical and electro-optical control of light modulation was very 

intense at that time, and the hope of efficient optical control techniques was high.  Spatial 

Light Modulators (SLMs) such as the Hughes liquid crystal light valve, the Texas 

Instruments deformable mirrors, the AT&T SEED device, were early successes.  SLMs 

were applied to RF signal excision to block light in the Fourier transform plane,33 but 

there was the burdensome requirement for feedback systems to provide apriori control to 

the SLM to block light where excision was needed.  Hong et al demonstrated adaptive RF 

excision systems that could reject narrowband interference in wideband communication 

signals.35, 36  These approaches used acousto-optic correlation and two-wave mixing in a 

photorefractive crystal to couple time-correlated, narrowband interference energy away 

from the RF detector leaving behind the wideband signal.  This photorefractive approach 
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to optical modulation was sensitive to relatively low-intensity light and was an important 

step in achieving a fully adaptive system; however, a drawback was that only a few, at 

best, narrowband RF signals could be efficiently decoupled at one time.  Hong later 

proposed using adaptive optical power limiting based on a similar, but potentially more 

robust, photoconductive field-shielding approach reported by Steier in 1988.8  Interest in 

this approach generated the support needed for this dissertation. 

4.1 Electro-Optic Amplitude Modulation 

The optical power limiting approach reported by Steier involves self-modulation of 

Electro-Optic (EO) birefringence by photorefractive field shielding.  At the outset of this 

dissertation, this approach appeared very promising for adaptive signal excision.  Power 

limiting required no external feedback circuitry, and has a low-threshold intensity and a 

wide field of view (cubic crystals have no birefringence).  There were, however, 

questions regarding its suitability as a frequency domain notch filter. Investigating these 

questions of filter resolution and filter depth became an objective of this dissertation.  

Miniaturization is always an overriding objective, which puts constraints on the filter-

resolution capability. 

Photorefractive-charge confinement has adequate spatial resolution for 

holographic data storage; however, it was not known if this resolution could be 

maintained for very high-intensity optical and electric fields.  There is also the question 

of what photorefractive materials are best suited for this application.  The optical 

threshold and saturation intensity of the photorefractive material must be optimized to 

meet the dynamic range requirements of the Bragg cell system, which should include the 
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signal beam as well as the reference power.  This is because the benefits of having a 

collinear reference beam were two-fold:  phase noise is held to a minimum, and power 

limiting reduces both beams simultaneously, which doubles the attenuation using 

coherent detection.   

This chapter outlines the theoretical models needed to explore the potential 

performance of the field shielding optical power limiting technique for application as an 

adaptive filter in an acousto-optic RF signal excision system.  Optical power limiting and 

self switching in high-resistive photoconductive materials is the result of a combination 

of two physical processes, EO birefringence and photorefractive charge migration and 

trapping.  These two crystal processes are discussed and modeled in this chapter, while 

the experimental investigations are presents in Chapter 5, Experimental Results. 

4.1.1 Electro-Optical Birefringence and the Index Ellipsoid 

The index ellipsoid is used to describe the normal modes of propagation of optical waves 

in crystals, as governed by solutions to the wave equation.  The application of electric 

fields in EO crystals changes the dimensions and orientation of the index ellipsoid, which 

provides a means of controlling the phase or intensity of light propagating through the 

crystal.  This EO effect results from the redistribution of charges due to the applied field.   

The linear EO coefficients for cubic crystals such as Bismuth Silicon Oxide 

[Bi12SiO20] (BSO) and semiconductor GaAs in contracted notation are 
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The equation for the index ellipsoid with applied electric field is written using contracted 

indices as 
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where Ek (k= 1,2,3) is a component of the applied electric field E1=Ex, E2=Ey, and E3=Ez, 

x, y, z are the principal dielectric axes, and nx, ny, nz are the principal refractive indices.  

Substitution of the EO coefficients in Equation ( 4-1 ) with the equation for the index 

ellipsoid in Equation ( 4-2 ) gives the following expression for the index ellipsoid for 

cubic crystals: 
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Note that this cubic crystal solution has no optical birefringence when the applied electric 

field is zero.  As an example, let an electric field Ez be applied, so that Equation ( 4-3 ) 

becomes  
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The z-axis retains its principle index; however, the x-y cross term has deformed the index 

ellipsoid from a circle to an ellipse.  This is illustrated in Figure 4-1.   

 

 45o

 x' 

 y 

 y' 

 x 

 
Figure 4-1 Index ellipsoid for zinc-blende cubic crystals with applied field, from 
[37]. 

4.1.2 Electro-Optic Amplitude Modulation 

The electric control of optical amplitude by modulating electro-optical birefringence is 

well known,37 and the basic form of the EOPL is the EO amplitude modulator.  Yariv 

[37] provides EO modulator properties for three possible orientations of zinc-blende 

structure crystals such as BSO.  Slight consideration is made for the optically active BSO 

crystal used in this study.  Optical activity is discussed in the next section.  A transverse 

EO amplitude modulator is illustrated in Figure 4-2.  The zinc-blende cubic crystal is  
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Figure 4-2 Diagram of optical power limiting device and 
optimum crystal orientation. 

cut along the three surface planes, (110), (110) and (001), and oriented so that the electric 

field is applied perpendicular to the (110) plane, and beam propagation is perpendicular 

to the (110) plane.  This is the orientation needed to maximize the EO phase retardation 

in cubic crystals.   

The strength of refractive index modulation for a given applied field is a function 

of the electro-optic figure of merit, n3r41.  For this crystal orientation, linearly polarized 

light traveling along the z-axis will have an index of refraction change Dn for applied 

field E(x) given by 
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A normal polarization mode for this crystal traveling along the z-axis with interaction 

length L and externally applied voltage V induces a phase change given by 
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Note that the strength of refractive index modulation for a given applied field is a 

function of two parameters, the electro-optic figure of merit, n3r41, which is a crystal 

parameter; and the aspect ratio, L/d, which is a design parameter of crystal size.   

Amplitude modulation is achieved by polarization conversion and attenuation at 

an analyzer (polarizer oriented 90∞ with respect to the input polarization).  At z = 0, 

linearly polarized light is launched into the crystal at 45° with respect to the new 

principle axes, so that each polarization mode has equal magnitude when entering the 

crystal.  The modes propagate with different refractive indices so that the composite 

polarization begins to acquire a new orientation as shown in Figure 4-3.   

The voltage required to get a full 90∞ polarization rotation for the composite beam 

as it transverses the length of the crystal is the half-wave voltage V=Vp.  By equating G to 

p/2 (total phase difference between both beams is p radians) in Equation ( 4-6 ), the 

following expression for the half-wave voltage is obtained: 

 
Linear Elliptical Circular Elliptical Linear 

Dd = 0 Dd = p/4 Dd = p/2 Dd = 3p/4 Dd = p 

 
Figure 4-3 Polarization ellipses at various phase angles Dd = 0 - Dd=p. 
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At the output plane, an analyzer will block light according to the amount of voltage 

applied to the crystal, and Vp is the maximum voltage needed to achieve the maximum 

transmission.  The transmission through an amplitude modulator is given by 
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An expression for EOPL transmission takes into account the extinction ratio of 

the optical system (polarizers and crystal), as this ultimately determines the maximum 

notch depth.42  An expression for the output intensity at the analyzer as a function of the 

input intensity of the optical amplitude modulator that includes the extinction ratio of the 

polarizers is  
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where xp represents the polarization extinction ratio for the crystal and polarizer pair.  By 

using a polarized beam splitter, the applied voltage acts as a variable switch. 

4.1.3 Geometrical Considerations 

The half-wave voltage, Vp, is minimized by having a high EO coefficient and low aspect 

ratio.  Recall that L is the interaction length needed to accomplish the 90∞ polarization 

rotation required for amplitude modulation.  As seen in Equation ( 4-6 ), for a given 

material there is some flexibility with choosing d, L, and Vp, but there are trade-offs.  The 

interaction length is usually increased to minimize the Vp voltage, which can be quite 

high and cause difficulty in avoiding dielectric breakdown in air.  Increasing the length 

requires a longer depth of focus for the beams that make up the input signals.  For our 
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application the modulator is located at the focal plane of a lens, so the selection of spot 

size and focal length of the Fourier transform lens are not arbitrary.  The depth of focus 

constraint is illustrated in Figure 4-4.  Assuming the input signals applied to the power 

limiter approximate Gaussian beams, the best focus that can be achieved at the focal 

plane is 2W0, and this spot size diverges gradually in both directions outside the focal 

plane.  The depth of focus is the distance the beam maintains its minimum value to within 

a factor of 2 .  This amount is twice the Rayleigh range, z0 = 2 W0.  Using this 

definition, the depth of focus is  

E0 E0 
 e 

d

L 

2*21/2W0 
2W0 

 
Figure 4-4 Depth of focus, Gaussian beam divergence for E-O 
interaction length L and transverse dimension d, from [37]. 
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which shows that a small spot size and long depth of focus cannot be obtained simultane-

ously.  Equation ( 4-10 ) is used to solve for the minimum spot size  
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where n is the index of refraction in the crystal.  Note that a large refractive index 

increases the depth of focus significantly.  

The BSO crystal is optically active.  This means that right- and left-hand circular 

polarizations are the normal modes of propagation, rather than linear polarizations.  In 

this case Equation ( 4-3 ) does not apply, and the model must be modified to include 

optical rotation.  Solving the wave equation to obtain the index ellipsoid when electric 

fields are applied to optically active crystals is not a trivial problem and was not done.  

The nature of the problem will be made clear in the next section, which gives an 

introduction to optical activity.  Assumptions made in the next section with regard to the 

propagation modes for electrically biased optically active crystals are supported by the 

experimental results reported in Chapter 5. 

4.1.4 Optical Activity 

BSO is an optically active crystal, meaning that it is a natural polarization rotator.  The 

specific rotary power of BSO at wavelength 623.8 nm wavelength, defined as the amount 

of rotation per unit length, is r = 21°/mm.  The direction of rotation can be either right or 

left handed, depending on the seed used for crystal growth.  The crystal used in our 

experiments was right handed (counterclockwise).  The approximately 6 mm-length 

crystal, used in the experiments had a measured rotary power of 131°, so a safe 

assumption without using a micrometer is that a more precise measure of the crystal 

length is 6.24 mm.   
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Optical activity is found in medium with molecules having an inherently helical 

structure.  An optically active dielectric medium is characterized by the following 

medium equation:37, 38, 39 

 .0 EEεD ×∇+= ξε  ( 4-12 )
   
Note that this result indicates a spatially dispersive material, because D(r) is dependent 

on points in the immediate vicinity of r due to the derivatives of —¥E(r).  It can be 

shown that for plane wave illumination, the normal eigenmodes of propagation in the 

crystal are circularly polarized rather than linearly polarized.  A derivation of the right-

and left-hand circular polarization modes in optically active crystals is given in the texts 

by Yariv [37], Saleh [38], and Yeh [39].  Circular polarization propagates through an 

optically active material unchanged; however, each right- and left-hand component 

travels at different phase velocities, and this difference creates the optical rotation for 

linearly polarized light.  This is explained in the next paragraph. 

Any arbitrary plane wave polarization can be represented as a superposition of 

two orthogonal polarization states.  In addition to horizontal and vertical, linearly 

polarized light, left- and-right hand circular polarizations compose an orthogonal pair.  

Thus, linear polarization can be represented as a superposition of the normal modes of 

optically active medium.  When linear polarization is launched into an optically active 

crystal it is decomposition into right- and left-11davidsb16hand circular polarization and 

each component propagates through the crystal with separate refractive indices and phase 

velocities.  At the output, superposition of the two circular polarization components, 
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which have acquired a phase difference between them, results in a linear polarization that 

is rotated by an amount given by the specific rotary power of the crystal 
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where n- and n+ are the refractive indices for the left- and right-hand polarization modes.  

Values for BSO at l = .6328 mm are r = 21 deg/mm and (n- - n+) = 7.383¥10-5. 

The rotation of linear polarization can be avoided by using a quarter wave plate to 

convert linear polarization into a single circular polarization mode and launching 

circularly polarized light into the optically active crystal to eliminate birefringence.  After 

propagation through the crystal, a second quarter wave plate is used to convert the 

circular polarization back to the original linearly polarized state.   

When an electric field is applied to the crystal, EO birefringence alters the 

refractive indices, and the circularly polarized light obtains linearly polarized component 

as it propagates through the crystal (see Figure 4-3), during which the phase is altered due 

to optical activity.  A result of optical activity in an EO amplitude modulator is an 

increase in the half-wave voltage from that predicted by Equation ( 4-7 ).  For linearly 

polarized light, the applied voltage must be increased an additional amount in order to 

compensate for the total amount of polarization rotation due to optical activity.  For 

circularly polarized light the applied voltage must be increased an additional amount in 

order to compensate for half the total amount of polarization rotation due to optical 

activity; that is, the EO effect converts the circular polarization to linear polarization over 

half the length of the crystal.  Self-adaptive amplitude modulation can be achieved using 
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photorefractive charge generation, transport, and trapping that alters the EO 

birefringence.  The photorefractive process is the topic of the next section.   

4.2 Photorefraction 

Photorefraction is a term used to define a change of refractive index in EO materials that 

results from localized optically induced, space-charge electric fields.  The space-charge 

fields develop from a redistribution of electrons and holes due to photoionization, 

conduction, and charge trapping in the optical crystal.38, 40  The refractive index change 

can be quite long lived due to long lifetimes of the trapped charge and was originally 

thought to be optical damage.  Historically, interest in the photorefractive effect has 

involved wave mixing through multiple-beam interference and the self-generation of 

periodic volume diffraction gratings as well as storage of volume and planar holograms.  

The photorefractive effect is efficient at beam coupling because there is a quarter-

wavelength phase shift between the peak light intensity and peak refractive-index change 

that creates perfectly phase-matched Bragg scatterings.  Important applications of the 

photorefractive effects include energy coupling for amplification of small-signal beams, 

holographic recording and reconstruction for storing data, and real-time light modulation 

for optical computing. 

Photorefractive optical power limiting has been achieved using two variations of 

the photorefractive processes.  One method uses two-wave mixing to couple energy away 

from a strong beam and into the propagation mode of another probe beam.  This 

technique was used by Hong et al, 35,
 
41 to achieve adaptive RF signal excision.  This 

approach is limited in the number of simultaneous beams that can be efficiently power 
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limited, and only around 10 dB of attenuation was achieved.  Recently, optical power 

limiting due to efficient back-reflection beam coupling from periodic index gratings 

formed by standing optical waves in photorefractive fiber has been demonstrated.  These 

optical-fiber power limiters have applications to channelized approaches, where a linear 

or two-dimensional array of fibers is dedicated to each resolvable spot in a Fourier 

transform array or image.  This approach is proposed for reducing the focal length and 

depth of focus of the Fourier transform lens. 

The second method of photorefractive power limiting, and the one chosen for this 

research, is called Electro-Optic Power Limiting (EOPL).  It utilizes photoionized charge 

to self-modulate the externally applied half-wave voltage that produces EO polarization 

conversion discussed in the previous section.  This self-modulation results in efficient 

power switching at the polarized beam splitter.  Both of these approaches, dynamic beam 

coupling and EO self-modulation, are also being examined as methods for protecting 

detectors/sensors from high-intensity laser illumination (laser hardened detectors).  The 

EO approach appears more robust than the beam-coupling approach for multiple signals.  

Attenuation over 40 dB has been achieved.  Much of the theory developed for 

photorefractive beam coupling can be applied to the analysis of the EO approach because 

of the common physical processes involved.  

The objective of this section is to develop the theory needed to calculate an 

optical-transfer function for the EOPL.  Two models will be examined.  A simple 

analytical solution provided by Chang et al,42 that is based on changes in photoconduc-

tivity within an idealized rectangular-illumination region is discussed in section 4.2.2.  
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This model describes the EOPL transfer function and can be used on a point-by-point 

basis to approximate the spatial profile of a large, nonuniform beam.  However, the 

model does not take into account photorefractive charge transport.  The simple model is 

improved by taking into account the photorefractive charge transport model, which is 

discussed in section 4.3, and numerically calculating the space-charge field, Esc(x), 

induced by nonuniform optic illumination, I(x).  Esc(x) is used in Equation    ( 4-8 ) in 

order to calculate the spatial distribution of the EO modulator transmission function, G(x).  

The simple model compares quite well with the numerical results because a very simple 

relationship between dark intensity and optical power limiting applies.  For this reason, 

the simple model will be used to introduce the operation of the EOPL, and then the band-

transport model of Kukhtarev et al [50] and a numerical solution of Esc(x) will be 

discussed. 

4.2.1 Photorefraction and Electro-Optic Power Limiting 

The EOPL is an EO amplitude modulator that operates by taking advantage of 

photorefractive properties in doped crystals to self-modulate EO birefringence. 2, 42 The 

technique was first demonstrated as a means to visualize electrical domains in GaAs:Cr, 

responsible for bulk differential negative resistance,43 and was later demonstrated as an 

optical power-limiting device.2  Figure 4-5 illustrates the photorefractive field-shielding 

process.  A typical transverse EO modulator is shown using a crystal having 

photorefractive properties.  In order to explain the photorefractive effect, two cases are 

illustrated.  In the upper figure low optical illumination intensity is applied to the crystal, 

and in the lower figure high optical illumination is shown.  Both beams are linearly  
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polarized.  The low-intensity beam has optical intensity below the dark intensity for 

photoconductivity, and the basic photorefractive properties of photoionization, charge 

transport, and trapping are overwhelmed by the random effects of temperature.  The 

externally applied electric field is distributed uniformly across the crystal, and the EO 

birefringence rotates the polarization of the light propagating the length of the crystal by 

90∞.  This is normal operation for a conventional transverse EO amplitude modulator and 

when the field is at the half-wave value, ideally all light passes through the analyzer. 
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Figure 4-5 Photorefractive field-shielding in EO modulator. 

The lower half of Figure 4-5 shows the case when the optical intensity exceeds 

the dark-intensity threshold.  Photoionized charge will drift away from immobile ionized 

donors and recombine to accumulate at the dark edges of the nonuniform illumination.  

Charge separation creates a space-charge field oriented to oppose the applied field, 

thereby decreasing the electric field strength within the illuminated area.  Ideally with 
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adequate photoionization, this self-modulation can completely cancel out the applied 

field, so high-intensity light propagating through the crystal experiences no EO 

birefringence and will be attenuated at the analyzer (or reflected at a polarized beam 

splitter). 

The dark conductivity is a parameter that establishes the lower threshold limit for 

optical power limiting.  Shallow traps give rise to thermally ionized charges, resulting in 

a uniform, dark illumination (or dark conductivity) across the crystal that the applied 

optical intensity must reach before photoionization overcomes competition from thermal 

noise.  Light representing a signal that is intended to pass unaffected through the power 

limiter must have a lower intensity than the dark intensity.  The power-limiting threshold 

must be appropriately designed to meet the signal intensity requirements of the system, 

which is larger than the optical threshold for bulk BSO.  Fortunately, illuminating the 

crystal with a uniform optical bias can increase the optical threshold intensity.44  Thus, it 

is the uniform nature of the dark illumination that establishes the optical-limiting 

threshold for photorefractive effects to occur.  

4.2.2 Equivalent Circuit Model  

A simple model for the transmission function of the EOPL is obtained by assuming an 

equivalent electrical circuit for the illuminated and dark regions of the crystal and the 

applied half-wave voltage.42  Figure 4-6 shows the circuit.  The model ignores charge 

transport dynamics and assumes a single, square-profile beam, Ij (jam), with width = d, 

that must be less than the crystal width D, and uniform photoconductivity given by 
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Figure 4-6 Equivalent circuit model for electro-optic power limiter. 

where B is the coefficient of photoconductivity and 1/Rdc is the control illumination plus 

dark illumination conductivity.  That is, the control illumination fills the crystal and has 

width = D-d and uniform photoconductivity given by  
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where 1/Rdark is the dark conductivity, and Ic the control illumination.  For a steady state 

analysis, the capacitance is ignored. The applied voltage produces a current, and the 

conductivity can be obtained from Ohm's voltage current relation 
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where I = current, V = voltage, A = area of the crystal over which the voltage is applied, 

and D = distance between electrodes.  In the steady-state condition, the current through 
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the crystal is constant, so by knowing the photo and dark conductivities, the voltage in 

each region can be solved, and the amount of EO amplitude modulation is determined.  

The conductivity is obtained in the following manner:  The relationship between 

conductivity and charge carrier concentration is  

 )( pnq pn µµσ +=  ( 4-17 )
  
where n and p are electron and hole concentrations respectively, and mn and mp are the 

charge mobilities.  Photoionization of incident photons creates electron-hole pairs, which 

increases the concentration of electrons in the conduction band above their thermal-

equilibrium value.  For photorefractive crystals such as BSO, mobile electrons from 

ionized charges are responsible for conduction, while the positively ionized atoms are not 

mobile.  The linear relationship between photoconductivity and applied optical power is 

shown in Figure 5-18 for BSO, obtained experimentally.  The coefficient of 

photoconductivity, B, is obtained from the slope of the line by dividing conductivity by 

the optical power, s/I = B = 1.94¥10-8  [ohms-watts-cm]-1.  The optical wavelength used 

was 632.8 nm.  BSO has a very low dark conductivity, σdark=10-15/Ω-cm, which 

corresponds to a dark illumination of 5¥10-8.   

The voltage relationships are obtained by using simple voltage division.  The 

crystal has dimension D in the direction of the applied field, length L in the direction of 

light propagation, and cross-sectional area A over which the voltage is applied.  The 

voltage drop across the illuminated region can be obtained from the following relations: 



   

 79 

 

.
)(

,,where
A

dR
A
dDR

RR
R

VV

jdc
j

dc
dc

dcj

j
j

σσσ

π

+
=−=

+
=

 ( 4-18 )

  
Substituting the equations for resistance and simplifying (eliminates A = area) gives an 

expression for the voltage in the illuminated region in terms of Ij, which is  
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By substituting this voltage into Equation ( 4-6 ), one obtains the total phase change, that 

the Ij beam experiences in propagating through the electro optic crystal.  The result is 
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where Equation ( 4-7 ) is substituted into the center expression to simplify the equation.  

Equation ( 4-20 ) is used in Equation ( 4-8 ), to obtain an expression for the output 

intensity of the EOPL.  The result is  
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where Iin = Ij.  The optical transmission is T = Iout/Iin.  Figure 4-7 is a plot of Equation      

( 4-21 ) showing power in versus power out.  Two values of dark conductivity were 

plotted to show how uniform control illumination increases the optical power limiting  
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threshold.  The parameters used for the plot were obtained experimentally for BSO.  The 

plot with the dashed line was calculated using a control illumination 10 times greater than 

the dark illumination.  Note that the threshold for the dark conductivity occurs at the dark 

intensity, Idark = 5¥10-8 W/cm2, and the control light intensity when it is used.   
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Figure 4-7 Amplitude transmission plot for EOPL using simple 
model.  Dashed line shows effect of control-illumination bias. 

The curve has five regions of interest, labeled in the figure as (A) through (E), 

which are described as follows:  (A) At low -optical intensities, the ratio Iout/Iin is unity.  

This region encompasses the dynamic range for the desired optical signals and can be 

adjusted by uniform illumination.  For acousto-optic RF signal excision this is most likely 

the intensity of the reference beam used for heterodyne detection.  (B) When the 

threshold intensity for optical power limiting is reached, that is, any intensity above 

uniform illumination of the crystal, the output intensity begins to decrease with  
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increasing input intensity due to photorefractive field shielding, and the intensity follows 

the sine squared relationship for EO amplitude modulation given in Equation ( 4-21 ). (C) 

Minimum transmission occurs when the electric field is completely shielded.  With 

increased intensity the transmission increases due to leakage at the analyzer, the output 

again linearly tracks the input, but it is attenuated by the value xp = 60 dB, shown by the 

line indicated by D.   
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Figure 4-8 Spatial power limiting plot using simple model for 
EOPL applied on a point-by-point basis. 

While Figure 4-7 shows the transmission over a range of input values for a square 

beam applied to the EOPL, the transmission as a function of the beam profile I(x) can be 

approximated by mapping the results of Equation ( 4-21 ) on a point-by-point basis with 

the input function Iin(x).  This is illustrated in Figure 4-8; however, in order to obtain an 
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accurate beam profile, solution of the photorefractive charge transport equations is 

required.  This approach is discussed in the next section.  

4.3 The Band Transport Model of Kukhtarev 

The previous simple model does not take into account the dynamics of photorefractive 

charge transport, which is accurately described by the Kukhtarev band transport model.  

The band transport model is composed of a coupled set of equations for rate, current, and 

Poisson's equation that account for photoionization, drift and diffusion, and charge 

trapping in photorefractive materials.  However, the set of four coupled differential 

equations are intrinsically nonlinear, and analytical solutions for the space-charge field 

Esc(x) with respect to the applied illumination are approximate and do not account for 

external parameters that apply to the EOPL, such as high-optical intensity, arbitrary beam 

size and shape, and externally applied high-intensity electric fields. 39, 40, 45, 50  For this 

reason, numerical solutions are used to obtain accurate values for Esc(x) and resulting 

transmission function for the EOPL. 

4.3.1 Energy Band Dynamics  

A generalized energy band diagram shown in Figure 4-9 illustrates the charge transport 

mechanisms occurring within the photorefractive crysta.  This model assumes that the 

photorefractive effect is due to one charge carrier, the electron, which is the case for BSO 

and other photorefractive materials.46,47  The material contains deep-level donor 

impurities with number density  and ionized acceptor impurities with number density 

N

0
DN

A << .  The0
DN  acceptor impurities are completely filled with electrons from donors and  
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have photoexcitation energy sufficiently large that these sites cannot be ionized by 

thermal or optical effects.  The density of neutral donor levels that can participate in the 

photorefractive effect is ND = - N0
DN A.  The number of ionized donors that can capture 

free carriers at temperature T = 0 and in the absence of photoionization is  = N+
DN A; that 

is, NA allows positively charged, unoccupied donor sites and bulk-charge neutrality.  The 

positively charged ionized donors are bound to the lattice and do not move with the 

mobile electrons.  The donor energy state is near the middle of the bandgap.   
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Figure 4-9 Photorefraction energy diagram, charge transport, and trapping. 

The crystal in Figure 4-9 is shown illuminated with nonuniform light, such as a 

Gaussian optical beam having intensity I(x) = I0exp(-(x-x0)2/W0
2) and radius = W0 that is 

small enough so that there exists a light region surrounded by dark regions within the 

crystal.  The requirement for an optical intensity variation in space is essential for the 

photorefractive effect so that charge carriers have the ability to accumulate in "dark" 
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regions.  Uniform intensity does not provide a region for charge to accumulate.  The dark 

intensity is defined as b/s, where s is the photoionization cross section, and b is the dark 

generation rate.  In the light region electrons from deep-level impurities ND are 

photoionized into the conduction band.  The density of ionized donors  is increased, 

which increases the material conductivity as discussed earlier.  The energy required for 

photoionization is at least the difference between the conduction band energy and the 

energy level of the deep traps.  Photoionized electrons are generated at a rate G that is 

proportional to the optical intensity I(x) and the neutral donor density (N

+
DN

D - ), and can 

be expressed as 

+
DN

 ).()( +−+= DD NNIsG β  ( 4-22 )
  

The rate of trap capture, R, is dependant on the number of electrons n(x), the 

recombination coefficient gR, and the total number of ionized donors and is given by  +
DN

 += DR NnR γ  ( 4-23 )
  
By considering the generation and recombination rates for the level populations, the 

following single, rate equation is obtained that describes the variations in the populations 

of ionized donors and mobile electrons:  

 
.)()( ++

+

−−+= DRDD
D NnNNIs

dt
dN γβ  ( 4-24 )

  
The mobile electrons have an average lifetime, t0 = (gRNA)-1, and can drift or 

diffuse before recombining with ionized donors.  The migration of mobile electrons 

results in a current density that may affect electron density.  The current continuity 
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equation relates the time rate of change of the charge density to the diffusion of the 

current density and is given by  

 
)(1 j

qdt
dN

dt
dn D ⋅∇+=

+

 ( 4-25 )

  
where q is the electronic charge and —◊j = -∂r/∂t is the current continuity equation.  The 

current density is composed of contributions from the drift and diffusion of electrons.  

Drift and diffusion of electrons is proportional to the electron mobility and is given by  

 
dx
dnTkEqnj B µµ +=  ( 4-26 )

  
where m is the mobility, kB is Boltzmann’s constant, and T is temperature.  The term on 

the left is current due to charge drift from the force of the electric field, while the term on 

the right is the current due to charge diffusion from regions of high- to low-electron 

concentration, which is noted by the spatial derivative of the electron concentration.  

Photovoltaic current is not present in BSO and is not considered here, but can be applied 

to the model by adding its effect to Equation ( 4-26 ).  Note that the diffusion coefficient 

is related to mobility through Einstein's relation 

 
.

q
TkD B

n µ=  ( 4-27 )

   
The diffusion and drift lengths relate charge velocity and lifetimes to charge movement.   

The diffusion length is the square root of the product of the diffusion coefficient and the 

carrier lifetime and is defined as 
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where the definition of carrier lifetime t0 is used on the right-hand side.  A term for drift 

length relates the charge mobility, field strength, and lifetime to a distance, 

 
,0

00
AR

e N
E

EL
γ
µτµ ==  ( 4-29 )

   
though this is term may be misleading.  The large, externally applied fields used in the 

EOPL will dominate diffusion current and the distribution of charge, but the results of the 

coupled equations show that drift fields are affected by field shielding.  The electric field 

E(x) in Equation ( 4-26 ) is due to the applied electric field or any charge separation 

within the crystal.  The EOPL requires an external half-wave voltage applied to the 

crystal.  The uniform, externally applied voltage is Vp/d = Ep, or in general  

 
∫

−

=
2/

2/

d

d

dxEV ππ  ( 4-30 )

  
where d is the distance between electrodes.  Figure 4-9 shows how the photoionized 

electrons drift toward the positive terminal where they eventually recombine with ionized 

donors.  Charge photoionization, migration, and trapping result in charge accumulation at 

the illumination dark edge.  The charge migration creates an electric field that must 

satisfy Poisson's equation, which can be expressed as  

  
)( nNNqE

dx
d

AD −−== +ρε  ( 4-31 )

  
where e is the static dielectric constant of the crystal given as e = e0eR.  A summary of the 

material properties for BSO used in this discussion is given in Table 4-1. 



   

 87 

Table 4-1 Material Properties for BSO 

Number density, donors  ND = 10+19 cm-3   [48] 

Number density, acceptors  NA = 10+16 cm-3   [48]  

Rate of thermal generation of electrons  b = 5.3 ¥10-9 sec-1   [48] 

Photo-excitation cross section s = 1.06¥10Ä1cm2/Joule   [51]   

Rate of electron recombination gR = 1.6¥10-11 cm3/sec   [48]  

Mobility  m = 3¥10-2 cm2/(volt-sec)   [48]  

Diffusivity Dn = 7.7¥10-4 cm2/sec   

Excess carrier lifetime t0 = (gRNA)-1 = 6.25¥10-6 sec  

Diffusion length LD = 0.7 mm   [48]  

permittivity, e = eo er,  4.9584¥10-012
 coulomb/(volt-cm)  

relative permittivity  er = 56   [48]  

Electro-optic coefficient  r41 = 5¥10-12 m/V   [37] 

Refractive index 2.5   [37]  

Dark conductivity 1.0¥10-15 (W cm)-1   [49] 

 
 

4.3.2 Steady-State Solutions for Kukhtarev's Band-Transport Equations 

The previous section described the differential equations that are used to define the 

photorefractive band-transport model of Kukhtarev et al.50  The coupled differential 

equations are intrinsically nonlinear so an analytic solution has not been determined.  

There has been interest in approximate, analytical, steady-state solutions that describe the 
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optical and electric properties of diffraction gratings, including dynamic holographic 

gratings. 39, 40, 45, 51  Analytical solutions discussed in the literature are principally only 

valid for small contrast gratings that take into account only the first-order solution, with 

extensions to the linearized solutions being reported as well.  For the case of no 

externally applied field, a very simple analytical solution is useful for describing the 

EOPL when the applied electric field is completely shielded.  This solution is now 

described.38, 51 

4.3.2.1 Analytic Solution for Zero Applied Field 

A good approximation for Esc(x) in the steady-state condition can be obtained by solving 

Equation ( 4-26 ) when no external electric field is applied.  In this case the total current 

density vanishes, so drift and diffusion current densities have equal magnitude and 

opposite sign.  Thus, solving for E(x) in Equation ( 4-26 ) gives the following result:  
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The approximation on the right side is obtained by ignoring the dark illumination, b/s, 

which can be much less than the applied intensity.  Results for E(x) with Gaussian 

illumination are shown in Figure 4-10.  Part (b) gives a plot of Esc(x) using Equation 

( 4-32 ) for two orders of Gaussian beam illumination intensity, I0 = 100 & 102 W/cm2, 

shown in part (a).  The charge density r(x) shown in part (c) is determined from the 

electric field using Poisson's equation, and the refractive index difference Dn shown in 

part (d) is obtained from Equation ( 4-5 ) using the EO coefficient for BSO.   

The EOPL uses an externally applied, half-wave voltage that prevents using 

Equation ( 4-32 ) to solve for Esc(x); however, this result will be used in the next section 
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Figure 4-10 Solution for no external applied field (a) Illumination intensity, (b) 
charge density, (c) electric field, (d) refractive index change. 

to show that in the region where space charge completely shields the externally applied 

field and Esc(x) = 0, the result of Equation ( 4-32 ) applies. 

4.3.2.2 Approach for Numerical Solution of Space Charge Field 

The application of electric fields to enhance diffraction-grating efficiency and to generate 

soliton propagation modes52,53 has generated interest in numerical solutions for  

Esc(x).  Efficient numerical solutions for the photorefractive model have been developed54 

and are best used to analyze the EOPL because large optical and electric fields are 

applied to the crystal.  The starting point for obtaining a numerical solution is the 

standard, coupled differential equations that comprise the photorefractive model.  They 

are repeated here for the steady-state conditions where no differential current exists, the 
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electron generation rate equals the recombination rate, and the gradient of the charge 

density is zero.  In the equations that follow, notation is made of those variables having a 

dependence on the independent variable x;   

 ))(())(()()( xNNxIsxNxn DDDR
++ −+= βγ  ( 4-33.1 )
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.0)( =xj

dx
d  ( 4-33.4 )

  
The numerical approach outlined by DelRe et al,54 that was used to obtain a solution for 

Esc(x) in an EOPL is now described.  Considering Equations ( 4-33.1 - 4), a single 

differential equation is obtained by making three observations:  (1) current density J in 

Equation ( 4-33.3) is constant, (2) Equation ( 4-33.2) allows dE(x)/dx to be expressed in 

terms of  and when substituted into Equation ( 4-33.1 ) gives an expression for n(x) in 

terms of dE(x)/dx, and (3) the excess charge density n(x) can be neglected with respect to 

.  The observations are used in order to obtain the single differential equation 

containing E(x)  
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To solve Equation ( 4-34) it is recast in a dimensionless form by introducing the 

adimensional quantities Y ∫ E/EDb, x∫ kDbx, Q ∫ 1+I/(Id+Ic), and G ∫ Jc/qmbEDb, where 

kDb is the Debye wave number defined by k 2 
Db = [q2NA/(ekbTND)](ND-NA), EDb = 
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(kbT/q)kDb, Id = b/s the crystal dark illumination, and Ic is control illumination used to 

increase the power limiting threshold.  After defining a = (ND – NA)/NA, and d = e kDb 

EDb/(QnA), Equation ( 4-34) can be rewritten as 
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By considering the case of NAÜ ND, the following approximations are noted:  d ª 1, k 2 
Db 

ª q2NA/(ekbT), and a á 1.  In addition, the optical densities associated with this 

application confine |dY/dx | Ü 1, so that dY/dx is neglected with respect to a.  Using 

these approximations, a simplified expression for Equation ( 4-35) is 
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Solving Equation ( 4-36) for Y(x) yields  
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where the primes indicate derivatives with respect to x.  Solving Equation ( 4-37 ) will 

provide the desired solution for Esc(x) = Y(x)/EDb.  A numeric solution of Equation ( 4-37 ) 

was obtained by using the boundary-value, problem solver program, BVP4C, available 

with the Matlab® math analysis program (see Appendix B for the Matlab® code).  The 

choice of a boundary-value problem solver is based on the assumption that in the steady-
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state condition the electric field at the crystal surfaces contacting the electrodes is 

constant by virtue of the externally applied half-wave voltage.  A solution is sought over 

the interval [0, d], where d is the crystal width between electrodes, hence the boundary 

conditions are Y(x = 0) = Y(x = kDbd) = the normalized value for the externally applied 

electric field, see Equation ( 4-30 ).  Because boundary-value problems may have more 

than one solution (or none or infinitely many solutions), solvers require that an initial 

guess for the solution be provided, as well as, if necessary, initial guesses for the 

derivatives of the solution.  The quality of the initial guess is critical for the solver’s 

performance and even successful computation.  The initial guess for Esc(x) assumes that 

the illumination is much smaller than the dark illumination and therefore Esc(x) equals the 

constant, externally applied field.  The derivative of this field is zero. 

Equation ( 4-37 ) is applied to the boundary value problem program by rewriting 

it as an equivalent system of first-order differential equations.  Using the substitution Y1 

= Y and Y2 = Y' the result is  
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 ( 4-38 )

   
The parameter g is the normalized constant current density given in Equation ( 4-34).  

The boundary conditions used here are the field strength at the electrodes g ∫ -Vp/(d EDb), 

where d is the distance between the electrodes.  It is assumed that in steady state the 

parameter g is a constant current density.  When solved numerically, g agreed closely 

with the definition, gmin ª -Vp/(D¥EDb), given in reference [54]. 
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In order to troubleshoot the code and test the accuracy of the model, examples and 

results reported by Singh et al [51] for sinusoidal intensity gratings were compared to 

calculations obtained using the model discussed in the previous paragraphs.  Figure 4-11 

shows the space-charge field results obtained from illumination having the following 

form: 

 88
mid /)x-(x-

0 e)2cos(m1)( σπ






Λ
+= xIxI  ( 4-39 )

   
where m is the modulation index, L is the modulation wavelength, and the exponential 

function is a super-Gaussian, with half-width given by s, that effectively approximates a 

rect function located at the midpoint of the crystal.  In the figure, (a) is Esc(x) resulting  

 

Distance, (X 4 microns) 

(a) (d

(c) (f) 

(b) (e) 

El
ec

tri
c 

Fi
el

d,
 (X

 1
0

) 

3  V
/m

) 

 

Figure 4-11 Numeric solutions for space charge field and TWM application 
used to compare known results from reference [51]. 
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from a sinusoidal input function with modulation m = 0.1, wavelength L=10 mm, and 

bounded by a super Gaussian function with radius s = 120 mm. (b) is modulation m = 1, 

L = 40 mm, and (c) is modulation m = 1, L = 80 mm.  Subplots (d), (e), and (f) show 

respective enlarged regions to give detail. 

4.3.2.3 Numerical Space-Charge Field Results for Gaussian Beam Illumination 

Numerical solutions for the space charge field Esc(x) were calculated in order to examine 

the nature of the amplitude response for the EOPL notch-filter function over a range of 

illumination intensities.  Results of these calculations were for the most part identical to 

that calculated using the analytic model of Chang et al [42],with results shown in Figure 

4-7.  The purpose of the numerical solutions for Esc(x) was to examine spatial response 

for the EOPL notch-filter function over a range of illumination intensities. Results are 

presented in Figure 4-12.  The range of Gaussian beam input illumination intensity used 

in the numeric solutions is plotted in part (a).  Using an analytical equation for the input 

illumination makes the calculations easier, and spline functions can be used to represent 

any input function analytically.  Our approach was to use simple Gaussian-beam intensity 

distributions given by the equation  
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where W0 is the 1/e2 width, selected to be 25 microns.  Figure 4-12 (a) shows seven 

intensity plots that were used as input functions.  The peak intensity, I0(x), is varied in 

each plot by two decibels and ranges from 10-8 to 104 W/cm2.  The range of the spatial 

dimension x was -150 to 150 microns, with the beam centered at zero.  The results of  
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Equation ( 4-38 ) for determining space charge field Esc(x) are plotted in part (b).  These 

results and Poisson’s equation, dE(x)/dx = 4pr/e, were used to calculate the distribution 

of charge density shown in Figure 4-12 part (c).  Note that the charge distribution is 

symmetric (for the most part--see the enlarged detail shown in Figure 4-14) with positive 

and negative peaks that form an effective charge dipole.  The change in refractive index 

due to the EO effect was calculated using the EO relation Dn = n3r41 ¥Esc(x).  Note that 

the index variation forms a Gaussian shape that flattens out with increased illumination as 

the space-charge field builds.  When the shape of Dn is compared to Figure 4-10 (d), it is 
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Figure 4-12(a) Gaussian beam illumination with I0=10-8 to10+4 W/cm2 and 1/e2 
radius = 25 mm. (b) Numeric solution of Esc(x) for external field E = 13,913 V/cm.  
(c) Charge density obtained from Esc(x) and Poisson’s equation. (d) Delta refractive 
index using Esc(x) and Equation ( 4-5 ).  Note in (a) and (b) + & 0 marks the charge 
density peaks from (c).  
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apparent why an externally applied field is needed for applications where photorefractive 

index variations are used to create guided or soliton propagation modes.52,53   

In Figure 4-12, parts (a) & (c) the peak charge positions are annotated on the plots 

by o’s for the negative peaks & +’s for the positive peaks.  The annotations make it easy 

to see that the charge accumulates about the region that is defined by the dark-

illumination intensity.  Thus, in the steady-state condition, mobile charges migrate (are 

swept by drift and diffusion forces) out of the illumination region and into the dark region 

where the excess carriers are trapped.  Recall that the dark-illumination intensity is 

defined by Id = b/s + Ic, where Ic  is a uniform control beam that is used to increase the 

threshold intensity.  In this series of calculations, Ic is zero.  This result shows why the 

control beam works to raise the power-limiting threshold. 

The mobile charge is well confined in the dark regions.  Generalizations with 

regard to charge density at the dark edges and diffusion, drift, and Debye lengths (given 

respectively as Ld = mkBT/qgRNA = 0.7mm, LE =  mE0/gRNA = 26 mm, and LD = 

(kBTe/q2NA ) = 0.9 mm) were not seen.  These parameters will be discussed in 

Section4.3.2.4.  Generally speaking, for beam sizes of a few microns, the notch width for 

adaptive power limiting is a function of the dark intensity (or uniform, control beam-

intensity) and is created by charge accumulation at the uniform dark regions for the 

regions of the high-intensity beams that have intensity greater than in the uniform dark 

regions.  Thus, the factor that delineates the EOPL notch width is the dark-illumination 

intensity Id (or with addition of a control bias beam Idc =b/s + Ic). 
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Greater intensity beams create wider notch widths.  The width, Wd (or Wdc), at the 

dark intensity Id (or Idc) can be calculated using Equation (4-40) for a Gaussian beam and 

solving for the beam width at the dark intensity accordingly,  
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where 2W0 is the1/e2 spot size, I0 is peak intensity, and Id = b/s is the dark intensity (note, 

Ic = 0).  Figure 4-13 shows a plot of Equation ( 4-41) for Id = b/s = 5¥10 -8 W/cm2 and I0 

range from Id to Id¥1010 (100 dB).  The location of peak charge density shown in Figure 

4-12 (b & c) are also plotted in Figure 4-13 where it is clearly seen that the EOPL notch  

width simply grows as a function of the dark intensity.  For instance, Figure 4-13 shows 

that an unwanted high-intensity beam with intensity 50 dB greater than the desired signal  
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Figure 4-13 Solid line is Gaussian beam width at dark-intensity 
threshold for input beam intensity I0 over a 100 dB range and half- 
width W0 = 25 mm.  Numerical results are for field shielding notch 
width calculated for I0 at 10 dB intervals. 



   

 98 

has a notch width of 177 mm, a width that would attenuate around seven resolvable signal 

spots (figuring a 50 mm resolvable spot width). 

Strong illumination results in a space-charge field that completely shields the 

applied half-wave voltage, as seen in Figure 4-12 part (b) for illumination greater than  

10-5 W/cm2.  The numeric results show that when the applied field is completely shielded, 

rather than being a symmetrical dipole, there is a slight asymmetry between the positive 

and negative charge density peaks that have accumulated at opposite dark illumination 

edges.  This asymmetry is difficult to see in Figure 4-12 part (c) because of the scale.  In 

order to examine the asymmetry of charge density, Esc(x) was solved for different, 

externally applied field strengths.  The results for three cases, 0, 73, and 146 V/cm are 

plotted in Figure 4-14.  The peak Gaussian-beam illumination intensity I0 = 100 W/cm2 

was identical for all cases.  In all cases, Esc(x) shows identical linear dependence on 

position x in the central region where the external field is completely shielded by the 

charge dipole.  The case of an externally applied field of zero was already discussed and 

is plotted in Figure 4-10 part (b).  The linear dependence of the space charge is apparent 

from the analytic Equation ( 4-32).  Substituting the Gaussian  

illumination intensity given in Equation (4-40 ) into Equation ( 4-32), shows that Esc(x)  

has an inverse dependence on the Gaussian-beam width W0, as shown by 
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where this equation applies only to the case of zero externally applied electric field, as 

well as the region shielded by the charge dipole, that is, the region where the plots 

overlap in Figure 4-14, where the ambient coulomb field is zero.  The constant slope,        
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-(kBT/q)2/W0
2,  is associated with a constant charge density, r= 0.33e-8 C/cm3, obtained 

by solving Poisson’s equation, Equation ( 4-31), for the case where the Gaussian beam 

radius is W0 = 25 mm.  Thus, when the externally applied voltage is completely shielded, 
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Figure 4-14 (a) Electric field for Gaussian illumination I0=1 W/cm2, W0 = 
25 mm, and three different external electric field values:  zero, 73, and 146 
V/cm. (b) Charge density for three conditions in part (a).  Note:  charge 
density, r = 0.33¥10-8 C/cm3, in center of the illuminated region results in 
a slight Esc asymmetry between the two poles.  



   

 100 

a constant charge density exists inside the illuminated region and the magnitude is 

dependent only on the beam radius and temperature, not intensity.  This positive charge is 

balanced by mobile, negative charges that migrate out of the illuminated region.  Figure 

4-10 shows that increased illumination intensity increases the width of this constant 

charge density, which again is balanced by increased negative charge density at the dark 

illumination edges.   

Figure 4-14 part (a) shows that Esc(x) peaks at Esc = 73 V/cm for zero externally 

applied field.  By externally applying 73 V/cm, a balance between Esc(x) and the applied 

field occurs.  All negative charge is swept toward the positive terminal, doubling the 

charge density on that side and eliminating the excess negative charge density at the dark-

illumination edge toward the side of the negative terminal.  Increasing the externally 

applied field beyond 73 V/cm creates a region of positive charge density at the dark-

illumination edge opposite the negative charge.  The positive charge density at the edge 

and at the center balances the negative charge density at the opposite dark-illumination 

edge.  Positive charge accumulates at the dark-illumination edge anytime the externally 

applied field cannot be balanced by the constant charge density in the illuminated region.  

Positive charge is bound to the lattice, yet a large accumulation of positive charge exists 

at a dark edge, suggesting that the positive-charge generation rate could be related to the 

dark intensity (control beam) where the positive charge accumulates.  However, Guo et al 

[44] reports that the dynamic response of the light attenuation showed no dependence on 

control-beam intensity Idc, only the signal beam intensity affected response time. 
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4.3.2.4 Numeric Space-Charge Field Solutions Using Pseudo d-Function Illumination  

When a beam of light creates a source of excess electrons in the crystal, the mobile 

electrons diffuse and drift away from the source and then decay by recombination over an 

average lifetime t0.  Charge is constantly ionized within the illuminated region, and in 

steady state there is an accumulation of charge density at the dark edge.  It may be 

assumed that charge collects at the dark edges according to an exponential decay of free 

carriers in the conduction band that are trapped at a distance x from the dark edge.  The  

exponential decay is given according to equations 
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 ( 4-43 )

   
where x0 is the location of the dark edge.  Figure 4-15 shows a normalized plot of charge-

density decay according to Equation ( 4-3 ) for diffusion length defined in Equation          
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Figure 4-15 Exponential charge decay showing idealized 
drift and diffusion lengths. 
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( 4-28 ), where LD = 0.69 mm for BSO; and drift length defined in Equation( 4-29 ), 

where Le = 26 mm for BSO, and external applied field E = 13,913 V/cm.  

The charge density plots in Figure 4-12 (c) and Figure 4-14 (b) show, for each 

value of I0, a uniform spatial confinement of charge density at the dark edges, indicating 

that the confining forces, that is, coulomb, diffusion, and drift, are not showing a 

preferential direction for the illumination beam width, W0 = 25 mm, used in that example, 

especially with regard to drift length.  The wide spots sizes used in the previous figures 

were chosen for this purpose, as well as to match experimental beam sizes.  Pseudo-delta 

illumination functions were applied to the model in order to investigate the limits on 

charge confinement with respect to drift and diffusion lifetimes.  Delta function 

illumination was approximated by the following equation: 
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and applied to the numeric space charge model.  The results are plotted in Figure 4-16 for 

three beam widths, W0 = 0.005, 0.05, and 0.5 mm.  Charge diffusion is clearly seen for 

W0 = 0.005 mm, but the one-micron beam width falls off in the manner of the applied 

Gaussian illumination and shows no distortion in shape due to charge diffusion.  The plot 

shows that an assumption of simple exponential decay with diffusion length LD is 

consistent with the results of the numerical solutions for no externally applied field. 

In another series of solutions, an electric field E = 13,913 V/cm was applied and 

the illumination function was again as series of approximated delta functions having 

widths W0 = 0.05, 0.5, and 1.0 mm.  The results are plotted in Figure 4-17.  The plot  
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clearly shows the effect of charge drift due to the external field; however, the charge is 

confined to within one micron of the beam center, and the result for the one-micron 

radius beam has no pronounced distortion in the space-charge shape.  The simple 

assumption of exponential decay according to a drift length obtained from Equation         

( 4-29 ), Le = 26 mm, obviously does not apply, indicating that drift length is not a useful 

measurement of charge confinement when applied in this manner.  Figure 4-12 (c) shows 

that at the dark edges the charge density exponential decay length is decreased slightly as 

the charge density increases for increased optical power.  Thus, even with large external 

fields applied to the crystal, the dynamic field and charge relationships provide adequate 

charge confinement to create useful notches in the applied field that controls EO 

birefringence and amplitude modulation of strong signal beams applied to the EOPL. 
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Figure 4-16 Space charge field for approximate delta 
function illumination having radius, W0 = 0.005, 0.05, 
and 0.5 mm, and no external field. 
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Figure 4-17 Space charge field for approximate delta 
function illumination having radius, W0 = 0.05, 0.5, and 
1.0 mm, and 13913 V/cm external field applied. 

 

4.4 EOPL Notch-Filter Width Analysis 

An illustrative example for EOPL notch width in a frequency-domain optical processor is 

given.  The number of resolvable spots is 100 and each resolvable spot has 50-micron 

width.  The A-O bandwidth is 20 MHz, and there is 2.5 mm spatial distance between the 

highest and lowest frequency in the optical Fourier transform plane. An EPOL is inserted 

at the Fourier transform plane to achieve adaptive notch filtering.  A heterodyne-

detection reference beam floods the crystal with 1¥10-3 W/cm2 optical intensity and 

functions as an optical control to raise the power-limiting threshold intensity of BSO by 

50 dB.   A probe/signal beam has an intensity 1¥10-3 W/cm2.  Two high-intensity beams 

located on each side of the signal beam have power 50 dB greater than the signal beam.  

From Figure 4-13 this undesired high-intensity beam creates a space-charge field in the 
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BSO crystal that attenuates optical power over a distance of 150 microns, a width 

approximately equal to 3Dt for the Bragg-cell resolvable spots. The positions of the two 

undesired beams are selected for this example so that the signal beam will not be 

attenuated over its 50-micron resolvable spot size.  Figure 4-18 shows solutions for the 

optical intensity at the output of the polarized beam splitter as a function of spatial 

frequency.  The upper, dashed line is the input illumination intensity.  The solid line is 

the output intensity calculated from Equation ( 4-9 ) using a numeric solution for Esc(x).  

The lower dashed line is the output calculated point by point using the analytic formula 

based on photoconductivity given by Equation ( 4-20 ).  Note that the solution from  

Equation ( 4-20 ) agrees quite well with the numerical solution except that it fails to 

account for the slightly asymmetric charge density discussed earlier.  The signal beam is 

preserved when positioned in the dark region between the two undesired beams. 
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Figure 4-18 Optical power limiting calculated for three Gaussian beams, I0 = 
10-3, 10-8, and 10-3 W/cm2 respectively, W0 = 25 mm, and separation 110 mm.  
Upper dash-dot line is input intensity, solid line is output intensity, and lower 
dotted line is simple model for power limiting.   



   

Chapter 5 
 

Experimental Results 

5.1 Acousto-Optical Heterodyne RF Spectrum Analyzer 

An acousto-optic RF spectrum analyzer with heterodyne detection was constructed to 

demonstrate and study the principles of RF frequency excision in the Fourier transform 

plane.  This system is described in Section 5.1 and illustrated in Figure 5-1.  Initial 

experiments used a single-channel Bragg cell, and frequency excision was accomplished 

by placing wire in the Fourier transform plane to excise signals.   

The single-channel Bragg cell was replaced with a multi-channel Bragg cell in 

order to test phase discrimination for Angle Of Arrival (AOA) excision.  This system is 

described in Section 5.1.3 and illustrated in Figure 5-9.  Fiber-coupler heterodyning 

proved most useful for these experiments, as the small acceptance angle was used to 

show phase discrimination of signals, but also the spatial frequencies of the multi-channel 

Bragg cell were small enough to fit into the 3dB acceptance angle of a single-mode optic 

fiber.  The results are shown in Figure 5-12.   

Indirect measurements of EOPL notch depth and width were made by monitoring 

the output while ramping power levels, sweeping an interference beam across a 
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stationary, small signal, and measuring the effect on the detected small signal.  These 

results are given in Section 5.2.3 and illustrated in Figure 5-32 through Figure 5-34. 

5.1.1 Heterodyne RF Spectrum Analyzer Using Beam Splitters  

Figure 5-1 shows a diagram of the A-O, heterodyne RF spectrum analyzer with frequency 

excision that was built as a test-bed for these experiments.29, 30  The major features are the 

Bragg-cell phase grating that forms an optical image of the RF spectrum discussed in 

Section 2.5, Fourier Transform Using a Lens, page 19, the adaptive notch filter discussed 

in Section 4.2, Photorefraction, page 72, and the overall system discussed in Section 

3.2.3, Acousto-Optic RF Signal Excision, page 55.  
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Figure 5-1 Diagram of acousto-optic RF signal excision experimental setup. 
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A laser beam is split into a signal and reference beam using one of two beam 

splitters, which forms a Mach-Zehnder interferometer.   The signal beam is expanded to 

6.5 mm to fully illuminate the aperture of a Bragg cell.  Deflected light is focused with a 

73-cm focal-length lens to form an RF spectrum of light at the Fourier transform plane.  

Figure 5-31, page 142, shows a beam scan (x-axis and y-axis slice) at the Fourier 

transform plane for two RF signals applied to the Bragg cell.  The 400-micron separation 

between the two peaks on the x-axis is a function of the 4-MHz frequency difference 

between each signal applied to the Bragg cell, the number of gratings illuminated in the 

Bragg-cell time aperture, and the lens focal length.  The width of these focused spots, 129 

microns along the x-axis, and 241 microns along the y-axis, is a function of the beam size 

entering the lens. 

Ideally, the signal and reference beams are mixed at a second beam splitter so that 

the reference beam uniformly illuminates the Fourier transform plane.  In this manner the 

uniform reference beam provides the threshold intensity control for the adaptive optical 

power limiter.  Also, the optical power limiter notch depth is doubled by decreased 

heterodyne detection when the reference beam is attenuated with the signal beam.  

Another benefit is that phase differences in the reference and signal beam are reduced as 

discussed in Section 3.2.3.  The Mach-Zehnder configuration makes available two 

frequency planes for signal processing.  The optical image processing device (EOPL in 

our case) is located at one frequency plane to excise unwanted spectral components.  The 

other signal was not used in this experiment other than for monitoring.  A detector may 

directly follow the Fourier transform plane, or a 2-f system of lenses can be used to 
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condition the beams in order to maximize heterodyne detection.  Section 3.2.2, 

Heterodyne Detection, page 52, details the stringent requirements for heterodyne 

detection.  The experiment varied from this description in a few ways that are explained 

in subsequent sections of this chapter. 

 

 

Figure 5-2 Recovery of IF signal passing through system.  Lower screen has 
high intensity interference component that prevents recovery of the signal.  
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Ideally, an information-bearing, spread-spectrum signal at an intermediate 

frequency, IF, is mixed with a local oscillator (LO), and the resultant RF signal is applied 

to the Bragg cell for optical processing.  The recovered RF signal is mixed with a second 

LO again to recover the IF signal as shown in Figure 5-9, page 116.  Figure 5-2 is a 

display from a Tektronix TDS 460A digitizing oscilloscope showing a 1-MHz IF tone 

(1Æ) that was mixed with an 80-MHz LO and passed through the optical system.  The 

recovered signal (2Æ) is shown in the lower trace.  The recovered signal in the upper-

scope screen shows the resultant system noise.  The recovered signal in the lower-scope 

screen is washed out due to a high-intensity component added to the RF signal. 

Figure 5-3 shows how the intensity of a weak, “desired” signal, plotted along the 

y-axis, is washed out as the power of an added RF interference component, of similar  
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Figure 5-3 Signal washout due to high-intensity interference.  Desired signal 
intensity versus interference intensity. 
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Frequency, plotted along the x-axis, is increased.  The leveling off of the decreasing slope 

may be due to saturation of the Bragg cell or the noise floor limit was reached. 

The system RF signal excision capability was tested using thin wire to block 

signal components at the Fourier transform plane.  The results showed that RF excision 

resolution was half that expected from the calculations.  Measurement of the deflected 

beam revealed that it was less than half the crystal width, so that the Bragg cell time 

aperture was only half the expected value.  Figure 5-4 shows an image of the Bragg cell 

illuminated by the collimated laser beam.  The white box on the right delineates a notch 

on the Bragg cell where the deflected beam originated.  The deflected beam is seen to the 

left of the Bragg cell image, also delineated by a white box.  A multi-channel Bragg-cell 

was obtained to study phase deflection, but was also used for single-channel experiments.   

 

Figure 5-4 Bragg-cell deflection occurs in half the expected 
aperture. Deflected beam can be seen in the square on the left. 
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Unfortunately, signal resolution worsened because the new TeO2 crystal was designed to 

operate in the longitudinal acoustic mode, ua = 5.5 Km/sec, rather than the shear mode, ua 

= 0.62 Km/sec, reducing the time aperture by almost an order of magnitude.  The time 

aperture was not increased because of the size limitations of the lens and mirror used in 

the system. 

Only a –70-dBm, heterodyne-detected signal (-90 RF noise level) was obtained 

with the Mach Zehnder interferometer.  This was attributed to the low-precision 

alignment components that were available for this experiment, and also an oversight in 

conditioning the reference beam; that is, a sinc function imaged at the center of the Bragg 

cell as described in reference [31] was never tried.  An optical power budget analysis on 

the Mach-Zehnder interferometer showed that a much larger signal was expected.  The 

maximum raw signal level should have approached –16dBm (0.7 mA signal and 

reference beam detector current) using the 12-mW laser.  Table 5-1 lists measurements of 

loss and power budget for each component in the setup. 

Table 5-1 Power budget for AO RF signal excision experimental setup. 

Device Loss dBm Power Level mWatts 
Laser  12.0 
Dielectric Mirror #1 0.17 11.55 
Rotator 0.61 10.04 
Polarizer 0.92 8.13 
 Signal Reference Signal Reference 
Beam Splitter #1 1.15 7.34 6.24 1.5 
Bragg Cell 4.7  0.00 2.11 1.5 
Dielectric Mirror #2, #3 0.03 0.18 2.09 1.44 
Fourier Transform Lens 0.00 0.00 2.09 1.44 
 Signal 1 Ref. 1 Signal 2 Ref. 2 Signal 1 Ref. 1 Signal 1 Ref. 1 
Beam Splitter #2 0.95 6.88 6.88 0.95 1.68 0.295 0.430 1.157 
Detector Responsivity 0.5 0.5 Peak Signal mA Peak Signal mA 
Maximum Signal Level 2¥(Iref.*Isignal)1/2 0.7 0.7 
Power  -16.11 dBm  
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Figure 5-5  Acousto-optic RF excision using fiber optic coupler. 

5.1.2 Heterodyne RF Spectrum Analyzer Using Fiber Coupler 

The traditional Mach Zehnder interferometer was modified to take advantage of the 

precision fiber-optic components that were available in the lab.  Fiber couplers provide 

excellent heterodyne detection results.  Figure 5-5 shows a diagram of the fiber-coupler 

heterodyne detection approach used to increase the signal to noise ratio. 

The noise created in the system was measured using an HP 8563E spectrum 

analyzer.  Figure 5-6 shows the spectral intensity of an RF tone applied to the system and 

detected at the output.  The laser noise extends over a 300-KHz range and is most likely 

due to unbalanced lengths of the signal and reference beams that exceeded the laser 

coherence length.  The mismatch of the signal and reference beam path lengths is much 

different for the Mach-Zehnder and fiber optic coupler heterodyne schemes.  The former 

matched path lengths within a centimeter, while the latter had a path length mismatch that 

was difficult to even estimate (so it wasn’t).  Unfortunately, a longer coherence-length 

laser was not available. 
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Heterodyne Detection @ 81.088 MHz
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Figure 5-6 Laser noise for single tone passing through the 
fiber-optic heterodyne detection system. 

The acceptance angle for the fiber-optic coupler was determined by measuring the 

detected output as a function of the frequency applied to the Bragg cell.  The results are 

shown in Figure 5-7 where a 7-MHz range showed a –3-dB coupling bandwidth of 

approximately 0.9 MHz.  The fiber was positioned for maximum intensity at 81.1 MHz.   
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Figure 5-7 Fiber-optic coupling RF bandwidth. 

The fiber-coupling bandwidth varied from 1 MHz to 3 MHz depending on the focal 

length of the lens (10 cm and 73 cm were used).  This plot does not show the 50-dB+ 

signal-to-noise ratios that were eventually obtained with this fiber-coupler approach to 

heterodyne detection.   

A decision was made that useful characterization of the optical power limiter 

could be simulated by using the fiber as a detector for a stationary small signal probe or 

test frequency.  The effect on the probe signal as high-intensity interference signals were 

swept across the RF bandwidth would give a measure of the total system response. 

5.1.3 Angle-of-Arrival Separation Using Multi-Channel Bragg Cell 

A multi-channel Bragg cell was used to experimentally examine the separation of signals 

at the Fourier transform plane due to AOA.  Our experimental results were consistent 

with the theory presented in Section 3.2.1.2, Multi-Channel Bragg Cells, page 49.  A 

photo of the eight-channel Bragg cell is given in Figure 5-8.   
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Figure 5-8 Eight channel Bragg cell. 
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Figure 5-9 Experimental setup for 4-channel acousto-optic RF signal excision. 
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A diagram of the experimental setup is shown in Figure 5-9.  Modifications, such 

as the addition of a fiber-coupler shown in Figure 5-5, were made to obtain some of the 

data presented.  The multi-channel Bragg cell used in the experiments has properties 

listed in Table 5-2. 

Table 5-2 Multi-channel Bragg cell properties 

Item MTED-8-3 Units 
Optical wavelength range 400-840 nm 
Acoustic mode Longitudinal - 
Active aperture 1.0 ¥ 20.0 Mm 
Center Frequency 80 MHz 
Bandwidth (3dB) 30 MHz 
Optical transmission >95 % 
Maximum diffraction efficiency 70 % 
Time-bandwidth product 141 - 
Time aperture 4.7 ms 
Number of channels 8 - 
Center-center channel spacing 2.5 mm 
Channel isolation 25 DB 
Acoustic velocity 4.2 ¥ 103 M/sec 
Maximum electric input power 

1 
Watt 

Input impedance 50 Ohms 
V.S.W.R. 2.1:1 - 
Optical polarization Linear - 
Crystal material TeO2  

 

Figure 5-10 shows beam profiles for two cases of four-channel Bragg-cell 

operation, zero and 180∞ phase difference between each channel, that is, simulated AOA 

of boresight and +/-90∞ off-boresight.  The profiles were obtained using a Photon Inc. 

Model # 0180–XYS/M laser-beam profiler.  The resolution is 5 mm and the maximum 

beam width is 9 mm.  The beam scanner provides two slices of the beam.  The x-axis is 

the direction-of-frequency deflection (upper plot in figure), and the y-axis is the 
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direction-of-phase deflection for the multi-channel Bragg cell (lower plot).  The shift in 

azimuth giving the AOA for each spot is clearly seen.  In the figure the plot on the left-

hand side shows the beams from each of the four individual channels at about half the 

distance from the lens to the Fourier transform plane.  The uneven amplitude is due to the 

Gaussian illumination, and the Bragg-cell drive power gain could be adjusted to even the 

optical intensity between channels.  The middle plot shows the focused boresight beam at 

the Fourier transform plane.  Note the zero-order peak in the center and +/- first-order 

peaks on either side.  The first-order peaks are separated by a distance given by fy-max = 

λ/d*f = 25 mm (50 mm total between both peaks), where λ = 0.6328 mm, channel 

separation d = 2.5 mm, and lens focal length f = 100 mm.  The plot on the right-hand side 

had a 180∞ phase shift between each Bragg-cell channel, and this arrangement created 

degeneracy between the +/- 90∞ off-boresight peaks.  The +90∞ peak was suppressed 

when the beam scan shown in this figure was captured.  The four channels allow four 

x-axis   

y-axis 

 

Figure 5-10 Beam scan of multi-channel A-O deflection and Fourier transform. 
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resolvable spots between the first-order bandwidth; that is, 50 mm ∏4 spots = 12.5 mm 

/spot, which is close to the 17-micron spot sizes measured by the beam scanner. 

The higher-order deflections that are inherent with the sin(Nx)/sin(x) relation for 
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Figure 5-11 Eight-channel AOA deflection.  Top left, 180∞ phase offset between 
each channel.  Top right, no phase offset.  Bottom, vertical slice of pixel intensity 
combined from both photos.   
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 multi-channel radiators can be seen in Figure 5-11, which are CCD images of the Fourier 

transform plane.  The CCD image on the upper, left side of the figure is the case of 180∞ 

phase offset between each channel, and the image on the upper right has no phase offset.  

The lower plot shows a vertical slice (Note:  y-axis is rotated 90∞) of the pixel intensity of 

each CCD plot.  The two slices were laid on top of each other to show how the peaks 

overlapped.  In order to account for slight misalignment between the capture of each plot, 

the 180∞ phase offset slice was aligned to match the first-order notch with the boresight 

position.  The amount of shift is seen by the part of the line outside the border.  Note that 

the strongest orders have clipped intensity, which was necessary in order to bring out the 

detail of the higher order, not visible using the beam scanner.  Also, the 180∞ phase offset 

is degenerate between ± 90∞ AOA, and both peaks are clearly seen.  In the beam scanner 

plot, a capture was made when the -90∞ AOA spot had subsided briefly. 

Signal excision based on AOA was achieved by detecting only the signal of 

interest while excluding the unwanted signal.  This was accomplished by positioning the 

single-mode, fiber-optic, heterodyne detector along the y-axis so that either both or only 

one signal was detected.  The results for discriminating one or the other signal are shown 

in Figure 5-12, which clearly shows that one of the two signals is excised according to 

AOA.  To better show the detail, the plot was created by subtracting the Bragg-cell power 

amplifier noise and the laser noise seen in Figure 5-6 from the detected signal.  The AOA 

resolution for this example was better than that in Figure 5-10 because eight channels 

rather than four channels were used at the Bragg cell.  The two tones were separated by 

200 KHz so they could be identified in the spectrum-analyzer plots.  The calculated beam  
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Figure 5-12 AOA signal discrimination using 
positioning of fiber optic detector. 

separations on the y-axis (phase difference) is around 12.5 microns, and on the x-axis 

(frequency difference) is 3 microns.  The frequency separation is unresolved by the 

system because the beam width along the x-axis is 17 microns, the same as in Figure 

5-10, but the y-axis beam width is half as wide as before, as seen in Figure 5-11; thus, the 

AOA excision results are clearly due to phase only and not frequency.  The fiber 

acceptance angle for the f = 100 mm lens used in this experiment corresponded to a 

frequency bandwidth of 3 MHz.  The fiber-coupling efficiency for the multi-order beams 

was 16% (-7.7dB).  It is assumed that only the zero order was coupled into the 5-micron 
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fiber core.  The zero-order peak was measured to be 37.5% of the total diffracted light. 

The fiber-numerical aperture (NA) is 0.11. 

5.2 Electro-Optic Power Limiter 

The theory for the Electro-Optic Power Limiter (EOPL) is described in Chapter 4, 

Electro-Optic Power Limiter, page 60.  The power limiter has been demonstrated in 

GaAs, CdTe, and BSO.  Bismuth Silicon Oxide [Bi12SiO20] (BSO) is a particularly 

attractive photorefractive material due to its fast response, good optical quality, and high 

spatial resolution, so it is was chosen as the principal material to examine electro-optical 

power limiting for this research.  The useful wavelength range for BSO is 0.4-0.7 

microns.  For this reason the power limiter can have wide-band wavelength responsivity.  

The crystal was configured for optical power limiting following the method reported by 

Steier et al, Chang et al, and Guo et al [2,42,44].  Once the crystal was properly set up for 

adaptive power limiting, experiments were done to determine the optical power limiting 

threshold, intensity transfer function, and optical notch width.  The experimental results 

were consistent with the theoretical modeling.  The EOPL reduced high-intensity optical 

beams by an amount equal to the extinction ratio of the polarizer and crystal combination, 

ª 40-25 dB for our setup.  The benefit to interference reduction was apparent because 

with the EOPL powered off, the lock-in amplifier used to detect signals became 

overloaded.  The notch widths were delineated by the region where optical intensity 

exceeded the uniform background intensity. 
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Figure 5-13 Diagram of optical power limiting device.  B.E. = beam 
expander, P = polarizer, A = analyzer, Idc = control illumination, d = 
beam width > Id, D&L = crystal dimensions.   

5.2.1 Preliminary Setup 

BSO is a cubic crystal that was cut with three surfaces, (110), (110), and (001), and 

aligned as shown in Figure 4-2, which maximizes the EO effect.37  Because the dark-

intensity threshold is very low, 5 ¥ 10-8 W/cm2, the optic intensity was reduced by 

removing the Fourier transform lens, and the output from the Bragg cell was reduced in 

size to 1.4 mm using a diaphragm.  Figure 5-13 shows the modified experimental setup. 

The crystal was placed in a mount with some considerations made for applying 

high voltages, as well as micro-positioning in the x, y, and z (optic) axes.  A picture of 

the mount and crystal is shown in Figure 5-14. 

The crystal is placed between two crossed polarized beam splitters.  The optimum 

angle of linear polarization was determined by finding a maximum polarization  



   

 124 

 

Figure 5-14 BSO crystal secured in high-voltage mount. 

extinction ratio, as shown in Figure 5-15.  The best angle corresponded to 45∞ (305∞) 

from the x and y axes, as expected from the theory.   

Figure 5-17 shows a plot of the optical output intensity versus external voltage 

applied to the crystal.  The light intensity applied to the BSO crystal was kept below the 

dark-threshold intensity, because it was necessary to avoid attenuation due to any 

photorefractive field shielding.  The plot was used to determine the half-wave voltage.  

Since a voltage of 3500 volts began to arc across an air gap on the mount, a value of 3100 

volts was chosen as a safe half-wave voltage, slightly less than the 3300 volts half-wave 

voltage obtained from the plot.  Even 3100 volts was a little high at times because of 

changes in humidity that occurred.  This half-wave voltage result is much higher than 

Equation ( 4-7 ) predicts, due to optical activity in the BSO crystal. 
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Figure 5-15 Extinction ratio for polarizer / BSO / analyzer 
combination versus polarization orientation. 

The optical activity was removed by using a pair of quarter-wave plates between 

the crossed polarizers and crystal as shown in Figure 5-16.  This configuration launches 

circular polarization into the crystal, which is a normal mode (eigenmode) for optically 

active crystals.  The applied voltage versus transmitted light for the case of circular 

polarization is also plotted in Figure 5-17.  Note that the half-wave voltage is about 1050 

volts less for circular rather than linear polarization.  Using n3r41 = 82¥10-12 m/volts,37 in 

Equation ( 4-7 ) gives Vp  = 1423 volts for crystals with no optical activity.  The 

difference between this value and that obtained experimentally for BSO gives the amount 

of additional phase delay needed to compensate for optical activity (spatial dispersion).  

The experimental results indicate that EO birefringence disrupts the pure circular 

polarization eigenmodes of the crystal for the equivalent of half the crystal length.  

Section 4.1.4 gave that the rotary power of BSO is 21°/mm, so a 6.24-mm long crystal 

has 131° polarization rotation.  The difference between the circular and linear  
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polarization half-wave voltage values obtained experimentally is 1050 volts, and 

inserting this difference into Equation ( 4-7 ) gives a phase difference of d = 132∞, which 

amounts to a linear polarization rotation, d/2 = 66∞, or half the optical birefringence.  This 

is an intuitive result.  The difference between the experimental value for the spatially 

dispersive crystal and the predicted value for nonspatially dispersive crystals is d = 104°, 

which is not an expected result.  In the experiments, the polarization extinction ratio for 

linear polarization was –39 dB (includes ª -11 dB degradation due to BSO), while the 

polarization extinction ratio obtained using quarter waveplates was degraded to –16.5 dB.  

The quality of the quarter-wave plates used in the experiment was not known.  Linear 

polarization was used for the experiments that follow, because of the better extinction 

ratio. 

 V π  
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Figure 5-16 Quarter-wave plates used to launch circular 
polarization into crystal. 
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Figure 5-17 Voltage versus transmitted optical intensity 
through crossed polarizers for linear and circular 
polarization in BSO.  Peak is half-wave voltage. 

The linear relationship of photoconductivity to optical power obtained 

experimentally for our BSO crystal is shown in Figure 5-18.  A log plot is used to display 

the optical power that varied between 10 mW/cm2 and 2.5 mW/cm2.  The current across 

the crystal was measured at three voltage levels:  500, 1000, and 3000 volts (indicated by 

color), and 13 levels of optical power were used to obtain the photoconductivity plot.  

The variability seen in the data is probably due to the course alignment of the variable 

beam splitter that was used to vary the input power.  

The coefficient of photoconductivity B is obtained from the slope of the line s/I = 

B = 1.94*10-8  [ohms-watts-cm]-1.  The optical wavelength used was 632.8 nanometers.  

BSO has a very low dark conductivity, σd=10-15/Ω-cm, which corresponds to a dark 

illumination of 5¥10-8. 
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Over the course of many hours of high-voltage operation, the performance of the 

BSO crystal degraded, and it was observed that the crystal had been damaged due to 

dielectric breakdown of the crystal itself or the air surrounding it.  The damaged crystal is 

shown in Figure 5-19.  A rule of thumb for maximum power dissipation for the crystal is 

to stay under one watt, so ½ watt power dissipation is chosen as a working limit.  Large 

DC bias voltages are needed for E-O modulators in order to obtain a half-wave 

modulation voltage, so it is important that the photoconductivity be examined and kept 

inbounds.  A voltage of 3300 was needed in our experiment to obtain half-wave 

modulation.  The total optical power incident on the crystal (assuming an available carrier 

concentration) can be easily calculated using Ohm's relation.  Using 3100 Volts and ½ 

watt power, the maximum resistance is 19.22 mega-ohms.  The maximum conductivity is 

obtained by taking the inverse resistance and dividing by L/A to obtain 2¥10-8 [ohms- 
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Figure 5-18 Measured photoconductivity for BSO crystal for 
various applied optical power (x-axis) and applied voltage.  



   

 129 

 

Figure 5-19 Damaged region of BSO crystal due to high-
voltage dielectric breakdown. 

cm]-1.  Using the result of our conductivity measurements, approximately 2*10-8 [ohms-

watts-cm ]-1, the maximum optical power is limited to 1 W/cm2 illumination across the 

entire crystal area. The illuminated area of our crystal is 0.23 cm2.  In order to achieve 

this conductivity, a majority carrier concentration of at least n=s/(q m) = 4.2¥10+9 cm-3 is 

needed, and this value is well below the majority carrier concentration of BSO. 

5.2.2 EOPL Notch Depth Using BSO 

An indication of notch depth for BSO optical power limiting was obtained by measuring 

the optical output while sweeping the optical input intensity to the crystal.  The time 

between each sample of a sweep was one second.  The optical power incident on the BSO 

crystal was controlled by RF power to the Bragg cell.   The tests were automated using 

GPIB and Daisy Lab software.  The responsivity of the high-speed PiN diode detector 
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used to detect the output power was measured to be approximately 50% mamps/mwatt.  

Generally for the data that follows, input optical intensity is taken as relative to the RF 

power applied to the Bragg cell.  It was calibrated to be approximately 8¥10-7 W/cm2 at -

40 dBm power into the Bragg cell.  The optical power limiting threshold for BSO EOPL 

in the dark was found to agree well with dark-intensity values reported in the literature 

for BSO, 5¥10-8 W/cm2.  The data presented may have some inconsistencies because 

when the optical power levels increased and optical biasing was used, a 40-dB amplifier 

was added to the system, and this gain may not have been added to the relative intensity 

in all the plots that follow.  Hopefully, this should not cause too much of a problem for 

the reader. 

Figure 5-20 shows a comparison of experimental data for EOPL transmission 

over a 47-dB range, and the EOPL transmission model of Equation ( 4-21 ).  Each point 

on the plot was measured separately as the power to the Bragg cell was ramped up a step 

at a time over the 47-dB range.  The dwell time for each step was about 3 seconds 

because this value was long enough to allow sufficient charge to accumulate.  The input 

power was amplitude modulated at 2KHz, and the output was detected with a lock-in 

amplifier.  The calculated plot had a best fit using a dark photoconductivity and 

coefficient of photoconductivity parameter obtained experimentally.  The differences 

most likely took into account a “not quite fully dark” laboratory and reflections and 

absorption in the BSO crystal.   The parameters used were dr =0.125 cm, D = 0.23 cm, B 

= 2¥10-8, (sdark + sambient) = 7¥10-14, and xp = -25 dB.  The value for xp includes the 

degradation of the polarizer extinction ratio due to the BSO crystal.  Imperfections in the  
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BSO as well as damage over the course of these experiments limited the extinction ratio 

to anywhere from 25-40 dB.  Optimizing the extinction ratio by moving the active region 

for each set of measurements taken was sometimes done, sometimes not.  A typical 

extinction ratio for birefringent polarizers is 60 dB; however, we achieved only 50 dB 

extinction ratio using a sheet polarizer for the analyzer.  A sheet polarizer was used for 

convenience because a birefringent polarizer shifts the output beam when rotated and 

would require realigning the detector each time the polarization was changed.  

Unfortunately, measurements were never repeated using a birefringent analyzer; 

however, it was noted that when the half-wave voltage is completely shielded, the input 

beam can be attenuated by the value xp.  Since the reference beam was never passed  
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Figure 5-20 EOPL transmission plot for experimental data and 
results of numeric model.   
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Figure 5-21 EOPL transmission plot and modified model. 

through the crystal with the signal beam, doubling of the notch filter function, as 

described in Section 3.2.3.1, was never observed.  Figure 5-21shows an attempt at a 

better fit to the experimental data by modifying Equation ( 4-21 ) to a sine cubed 

relationship, sin3(G/2) plus a slight increase in ambient dark conductivity sambient.   

Figure 5-22 illustrates how the application of a uniform optical bias is used to 

increase the optical power limiting threshold from the ambient, dark-intensity value, Id = 

5 ¥ 10-8 W/cm2.  The optical bias was accounted for in the models [Equations ( 4-21 ) & ( 

4-35 )] by adding an optical-control term to the dark conductivity, sc = [sdark + (B¥Ic)] 

and the dark intensity Ic = (Idark+Icontrol).  The measurement of EOPL transmission versus 

optical-signal input power was repeated using a range of uniform optical bias for each 
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input power sweep.  The bias was applied using a separate laser delivered to the crystal 

face by fiber optic.  A circular, variable, neutral-density filter was placed between the 

fiber coupler and the laser, so the uniform bias power is a logarithmic function of the 

angle marked on the circular filter (0-360∞). 

Note in Figure 5-22 that the optical bias in series 3 is higher than in series 2, but 

the power limiting appears to be reduced.  This is most likely a memory anomaly due to 

trapped charge density that can have a long lifetime.  In general, power limiting was not 

as well behaved as Figure 5-20 and Figure 5-22 may indicate, and a means to control any 

memory effects is needed.  For example, alternating external voltage has been used to 

clear trapped charge, but not at the high-voltage values required for achieving half-wave 

E-O amplitude modulation.  Such a large alternating voltage was not possible with our 

system.  A time-integrating effect was observed by varying the time between each sample  
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Figure 5-22 EOPL transmission for various optical bias. 
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of the intensity sweeps from 0.5 seconds to 16 seconds for each sweep (normally 1-3-

second interval between samples).  The results are plotted in Figure 5-23, which shows 

that longer dwell times result in deeper optical attenuation.  A 10-dB difference between 

the 1-second and 16-second intervals between intensity samples was observed.  These 

results may not conflict with the dynamic response reported by Guo et al [44], which was 

25 to 2.15 msec depending on light intensity of 0.3 to 2.15 mW/cm2, respectively.  This 

result shows that the attenuation response slowly deepens over time, and this could have 

been related to other unknown factors, such as the 2KHz amplitude modulation used to 

detect the low-intensity beams.  The numerical analysis in section 4.3.2.3 indicates that a 

large concentration of positive charge must build up near the dark region.  Equation         

( 4-22 ) gives the generation rate for dark current [sb ¥ (Nd-N
 +
 d)] C/cm -sec, and Figure 

4-12(c) shows peak positive-charge density at the illumination dark edge ª 6¥10-6 C/cm3  
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Figure 5-23 EOPL transmission for various integration times. 
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at 104 W/cm2.  Dividing the peak value by the dark generation rate gives a value between 

6 and 0.006 msec depending on the ionized donors value N
 +
 d 0-103, respectively.  The 

experimental results generally showed a slow attenuation rate, on the order of seconds, to 

reach a steady state value.   

Figure 5-24 shows a plot of EOPL output as a function of time for four different 

optical bias intensities (0∞, 30∞, 60∞, 90∞ is decreasing light bias intensity).  The data was 

obtained by opening a shutter and collecting readings of the output intensity at 0.1-second 

intervals over a 10-second period.  No change in time response is apparent for the 

different optical bias intensities. 

Figure 5-25 illustrates the linear relationship between power limiting and 

photocurrent versus the applied optical bias.  The optical bias is plotted in the figure as a 

function of neutral-density filter position.  As the optical bias increases, the photocurrent 
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Figure 5-24 EOPL time response for four different optical bias intensities. 
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and optical transmission increases; that is, there is less attenuation of the input signal by 

field-shielding.  The signal continues to increase (less attenuation) until its maximum 

intensity passes through the EOPL.   
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Figure 5-25 EOPL photocurrent and power limiting versus optical bias. 

Figure 5-26 illustrates the role that an optical bias plays in erasing the memory 

effect.  A small signal is monitored for its transmission through the EOPL.  A high-

intensity interference component is applied and ramped up and back down in intensity 

four times.  The interference component creates space-charge field shielding that 

attenuates the signal beam.  With no optical bias, as the high-intensity component 

illuminating the crystal is removed, the small signal is not restored.  If an optical bias is 

present, the signal beam is restored as the high-intensity interference component is 

removed. 
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Figure 5-26 Optical bias used to clear trapped space charge 
memory.  

Figure 5-27 shows the temporal response for removal of trapped space-charge 

field by application of an optical bias.  The intensity of the optical input is constant.  As 

optical bias is increased, attenuation of the input beam is reduced.  The optical bias is  
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Figure 5-27 Time response of optical bias charge clearing. 
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increased at a rate given in the legend for each series.  The number of samples taken per 

series was 127.   

5.2.3 EOPL Notch Width 

A direct measurement of the notch depth and width of the EOPL in response to a 

narrowband RF interference component can be done by examining the system output 

spectrum for a wideband input signal.  As explained earlier, indirect measurement of 

notch depth and width are made for this research because of noise and poor wideband 

heterodyne detection in our system.  To simulate a wideband signal and narrow-band RF 

interference, the intensity of a small signal probe beam was monitored and plotted as a 

higher-intensity beam (or interference, as in RF interference, not optical phase 

interference) was swept across its position in the Fourier transform plane, located at the 

EOPL crystal.  It is believed that this arrangement is completely analogous to a direct 

measurement of the system response as described in Section 3.2.3.1, Notch-Filter 

Function, page 56.  Two different detection methods were used:  (1) amplitude 

modulation and lock-in amplifier detection, and (2) fiber-coupling and heterodyne 

detection. 

The uniformity of the BSO crystal was determined by using the Bragg cell to 

sweep a beam across the crystal face and measuring the output intensity.  Figure 5-28 

shows the two scans made.  The active BSO had a half-wave voltage applied and 90∞ 

polarization rotation, and a control had no voltage applied and the polarizer was rotated 

to pass the beam.  Variability in the central region (15 MHz) stayed within 1.8 dB. 
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Figure 5-28 EOPL uniformity scan using Bragg cell RF sweep. 

Figure 5-29 shows a series of notch-width measurements for various interference 

component intensities:  5, 15, 25, and 35 dB are applied.  A subtle point with regard to 

these plots is that attenuation of the interfering beam is not measured directly; rather, the 

effect that adaptive attenuation has on the probe beam (desired signal) intensity is 

measured.  The sample increment for each step of the interference beam sweep is 3.125 

microns, which was generated by 250-KHz increments applied to the Bragg cell with f0 = 

100MHz.  The figure shows both the experimental and numerical results, as described in 

Section 4.3.2, Steady-State Solutions for Kukhtarev's Band-Transport Equations, page 

87.  The probe beam intensity was slightly less than the applied uniform optical control 

light, Ic = 10-2 W/cm2, that was needed to increase the dark-threshold intensity because 

optical power was concentrated by the Fourier transform lens.  The probe beam was 

amplitude modulated and detected using a PiN diode and lock-in amplifier as shown in  
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Figure 5-13.  Useful interference reduction was indicated by noting that without the 

EOPL in the system, detection of the probe signal was overwhelmed for series b, c, and d.  

The 300-micron sample region corresponds to a 20 MHz RF bandwidth.  The resolvable 

spot size was slightly less than 100 microns because the aperture had been reduced in an 

effort to obtain functional power levels in the power limiter.   
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Figure 5-29 Experimental results for BSO notch width.  Ic = 10-2 
W/cm2 uniform optical bias.  Optical interference beam intensity 
relative to bias is a) 5, b)15, c) 25, and d) 35 dB.  Numeric results 
are shown with solid lines.  

The spot size needed to fit the numerical calculations with the experimental data 

was much larger than the expected value, that is, the signal spot size convolved with the 

interference spot size, multiplied by the aperture sinc function.  This discrepancy revealed 

problems with matching the E-O modulator interaction length with the depth of focus for 
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the focused beam.  The first series of notch-width measurements was made using a 10-cm 

f lens.  Calculations of beam width over a 6.0-mm region centering the focal plane are 

given in Figure 5-30 for refractive index of air and BSO and two different lenses used in 

the experiments.  It is apparent that for the 10-cm f lens, slight misalignment of the 

crystal along the optic axis will dramatically change the average beam size propagated 

through the modulator.  Thus for a 10-cm f lens, the beam size in the EOPL crystal is 

difficult to determine, and if the crystal is perfectly centered in the Fourier transform 

plane, the average beam size will be 3 to 4 times the minimum resolvable spot size.   
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Figure 5-30 Depth-of-focus calculations for 10-cm and 73-cm focal 
length lens.  Note experimental results (for air) using beam scanner 
are indicated in upper plot. 
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Initially a short focal length was chosen to minimize the overall system size.  The 

initial plan at the outset of this research was that a portable system could be used in a 

wideband communications test laboratory available in our organization.  This was also 

the reason the (what turned out to be) inadequate heterodyne mounts were used, as they 

were part of a portable optics table that was available.  The 10-cm f lens was replaced 

with a 73-cm f lens which gave a uniform beam over the interaction length of the crystal, 

as can be seen in the lower plot of Figure 5-30.   

The remaining series of notch-width measurements were performed using the 73-

cm f lens.  Two of these measurements used amplitude modulation and lock-in amplifier; 

the other used heterodyne detection.  The beam spot size for these notch-width 

measurements was measured in air using the beam scanner located at the lens focal plane.  

The beam scan indicated that the beam width varied little over the 6-millimeter  

 

Figure 5-31 Beam scan at Fourier transform plane for 73-cm focal length lens.  
Beam width is 128.8 ¥ 241 microns.   
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interaction length of the crystal, and the 13.5% beam size was 129 microns along the x-

axis and 241 microns along the y-axis.  The results are shown in Figure 5-31.  

Notch widths were again measured by tracking the intensity of a small signal 

probe generated at the Bragg cell by a –22 dBm RF signal.  This probe power was just 

below the EOPL threshold.  The results are shown in Figure 5-32.  The RF interference 

beam drive voltage was varied between -15 dBm and 0dBm for each sweep across the 

probe. The RF interference beams have intensity 7, 12, 17, and 22 dB higher than the 

signal.  By using Equation ( 4-41), the notch width of the space charge field generated by 

the RF interference beams can be calculated as follows:  The threshold intensity is Ic =  

–25 dB, and RF interference beams have intensity 10, 15, 20, and 25 dB greater intensity; 

that is, I0 = -15, -10, -5, and 0 dB.  The Gaussian beam diameter is W0 = 64.4 mm, so at 

the threshold intensity Ic, the beam width is Wdc = 195, 240, 275, and 310 mm, 

respectively.  Convolution of the signal and RF interference beams expands the resulting 

notch width to the sum of each beam (take the high intensity beam width as Wdc) so the 

calculated notch widths are approximately (195 + 129) = 324, (240 + 129) = 369, (276 + 

129) = 405, and (310 + 129) = 439 mm, respectively.  The x-axis scale in the plot is 

approximately 1MHz = 100 mm.  Measuring from the plot, the 13.5% notch widths are 

approximately 300, 600, 800, and 900 microns.  The percent difference between the 

experimental and calculated (calculated:experimental) notch widths are 324:300 = -8% 

for 10 dB intensity difference, 369:600 = 39% for 15 dB, 404:800 = 50% for 20 dB, and 

439:900 = 51% for 25 dB.  Table 5-3 lists the data for all the notch-width measurements 

using the 73-cm f lens. 
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Figure 5-32 EOPL notch width for 73-cm lens, 128-micron spot 
size beams, and D1.0 MHz RF is deflected 100 microns. 

The next set of notch-width measurements used fiber-optic coupling, but the 

signal was amplitude detected in the same manner as the previous series of 

measurements.  This data is presented to supplement the amplitude detection results and 

was collected in response to a problem that occurred with the first set of fiber-optic 

coupling heterodyne detection measurements.  Amplitude oscillations, later found to be a 

result of back coupling of the reference beam into the BSO, had rendered useless the first 

series of heterodyne detection data.  This problem was corrected by reducing the 

reference beam intensity. 

Figure 5-33 shows the plot of EOPL notch-width sweeps that used amplitude 

detection and fiber-optic coupling.  Attenuation of the probe signal was slightly more 

pronounced, but the results were similar.  The signal probe was generated by a –29 dBm 

RF signal.  The –20-dBm RF interference signal did not attenuate the probe, so the 

baseline threshold (dark intensity) is taken to be –20 dBm.  Expected notch widths were  
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Figure 5-33 EOPL notch width using fiber amplitude detection.  -29 
dBm small signal probe, RF interference intensity as indicated. 

again calculated using Equation ( 4-41) for I0 = 10 dB, 20 dB, and 30 dB; Ib = 0 dB; and 

2W0 = 129 mm, Wdc = 165, 233, and 285 respectively.  The percent difference between 

the calculated (Wdc jam + W0 probe) and experimental (approximate from plot) notch 

widths are (calculated:experimental) 300:400 = 25% for 10 dB intensity difference, 

362:500 = 27% for 20 dB, and 414:1000 = 58% for 30 dB. 

Figure 5-34 shows notch-width measurements that used heterodyne detection of a 

probe signal generated by a –15-dBm RF voltage applied to the Bragg cell.  Again, as 

with all the heterodyne detection signals, the laser noise was large, so in order to show 

the detail, the upper and lower sweeps are offset by ±10 dB respectively from the center 

sweep.  That is, the plots all had the same initial intensity of around –117 dBm.  Also, a 

baseline average power level was added to each plot in order to help show the start of 

power limiting.  That is, the horizontal lines are averages for the regions where no 

interaction occurred.  The small arrow at the bottom of the scale marks the frequency of  
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Figure 5-34 EOPL notch-width measurement using 
heterodyne detection. 

the probe signal.  Also, vertical lines were added to mark the frequencies that appear to 

delineate the notch width.  The approximate 13.5% notch widths taken from the plot are  

-10-dB RF interference = 3.25 MHz (325 mm), 0-dB RF interference = 4.0 MHz (400 

mm), and +10-dB RF interference = 5.25 MHz (525 mm).  Note that the right hand side 

appears to have one notch delineation point for each of the three scans, while the left-

hand side notch delineation point shifts as the beam intensity increases.  This result was 

not seen in the amplitude measurements, most likely because they were less precise, as 

can be seen from Table 5-3.  Comparing all the expected and measured values for notch 

widths showed variability from 10% to 50%, but this variability seemed to be confined to 
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the amplitude detection schemes, while the heterodyne detection scheme had very 

consistent results. 

Table 5-3 EOPL notch width measurements and calculations 

Detection Decibel Jam 
Power 

5 dB 10 
dB 

15 dB 20 dB 25 dB 30 dB 

Calculated 
Width, mm 

267 324 368 404   

Measured 
Width, mm 

300 600 800 900   

A
m

pl
itu

de
 

Percent 
Difference 

11% 46% 54% 55%   

Calculated 
Width, mm 

 324  404  467 

Measured 
Width, mm 

 400  500  1000 

A
m
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itu

de
  

(F
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Percent 
Difference 

 19%  19%  53% 

Calculated 
Width, mm 

267  368  438  

Measured 
Width, mm 

325  450  525  

H
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od

yn
e 
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Percent 
Difference 

18%  18%  17%  

 

5.3 Experimental Recommendations 

RF noise from the RF generators and amplifiers used to drive the Bragg cell created 

problems in the lab for heterodyne-detected signals.  In addition, recovered baseband 

signals included a lot of noise generated by the system.  A careful consideration of how 

to avoid this source noise is necessary.  Of course, this is exactly the reason an 

interference-reduction system is needed outside the lab where cluttered RF environments 

also exist.   
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The fiber-coupling approach was useful for obtaining measurements on the EOPL 

as a last resort, but this approach was only used because the mirror and beam splitter 

mounts lacked good micro-positioning features, and heterodyne detection was never 

optimized because of an oversight (a flat-top optical illumination profile was sought, but 

never obtained).  Future experiments should make careful consideration for optimizing 

heterodyne detection, such as outlined in reference [29], and a collinear process should be 

considered. 

Optimum notch depth is achieved by maintaining the highest quality of 

polarization extinction.  The quality of the power-limiting crystal is most important, as 

nonuniformity in the BSO was the biggest degrading factor for the polarization extinction 

ratio.  Also, the high half-wave voltage for BSO eventually degraded the crystal.  

Quarter-wave plates can reduce this voltage, but they might also factor into polarization 

extinction ratio degradation. 



   

Chapter 6  
 

Conclusions and Recommendations 

6.1 Conclusions 

The experimental results for the photorefractive, EOPL adaptive notch-filter depth and 

width showed good agreement with solutions of the steady-state numerical models.  The 

notch-filter width was seen to grow to three to four times the Rayleigh resolution criteria 

for interference that was 40 dB greater than the desired signal intensity.  In this regard, it 

is apparent that the trade-off between notch-filter width and depth that Erickson 

describes, ref [32], is simply a statement of the discrepancy for the Rayleigh resolution 

criteria when comparing high-intensity interference (+40dB) spot sizes to low-intensity 

signal spot sizes in the frequency plane, as is shown in Figure 2-6.  Therefore, the optical 

power limiter can adaptively create a notch-filter function with ideal width and depth 

needed to reject RF interference.  The aforementioned expansion of the spot size by three 

to four times should be considered when designing the time-bandwidth product for the 

system. 

With regard to system size and the Fourier transform lens, a long focal length is 

needed to maintain a long depth of focus through the interaction length of the EOPL, 

which required spot sizes on the order of 40 microns.  There is much less restriction on 
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the minimum spot size with respect to charge confinement and photorefractive field-

shielding, which can maintain notch widths to a few microns in size.  Decreasing the 

Fourier transform lens focal length results in decreased spot size resolution at the 

excision plane, but again this requires increasing the time-bandwidth product.  

Approaches for mitigating the long depth of focus are discussed in the next section.   

The crystal appeared to have response-time limitations.  The models used in this 

analysis dealt with steady-state conditions, and this research did not attempt to verify 

experimentally the dynamic response for BSO reported in the literature.  However, the 

experiments showed that reaching a steady-state value for optical attenuation could take 

up to a few seconds.  Memory effects did not seem to be a factor if a uniform control 

beam is used.   

Finally, AOA resolution was shown to be a function of the number of antenna 

elements, N, but the 4/Dt notch-filter width needed to reject +40-dB RF interference 

washes out the capability of broadband RF interference rejection based on just a few 

channels of AOA.   

6.2 Recommendations for Future Work 

Many system improvements are required before the potential of this A-O-based 

frequency plane filter is realized.  Unfortunately, the limited resources available for this 

research effort allowed investigation of only a small portion of the required effort.  The 

following subsections list a few topics that were considered for this research, but could 

not be fully developed. 
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6.2.1 Collinear-Beam Architecture 

The importance of reducing system-generated noise was an obvious result of the 

experiments.  Collinear-beam, Mach-Zehnder designs reduce phase noise and allow use 

of lasers with short coherence lengths.55, 56, 57  A collinear-beam design that might 

improve upon the one illustrated in Figure 3-14,32 could be achieved by modifications 

such as those illustrated in Figure 6-1.  This approach avoids using the undiffracted beam 

as a reference.  A Fresnel lens is used as a beam splitter but produces two different types 

of beams:  (1) a collimated signal beam that illuminates the full aperture of the Bragg cell 

and (2) a reference beam deflected at an angle equal to the center frequency,f0 of the 

Bragg cell and focused between two separate Bragg-cell channels so that the reference 

beam does not interact with the sound waves.  The second lens, a Fourier transform HOE, 

reverses the roles of the two beams at the Fourier transform plane.  The reference beam 

uniformly illuminates the EOPL, while the signal beams are focused at the EOPL.  

Heterodyne detection might be achieved immediately behind the EOPL, as shown, or 

optimized in some other fashion using additional lenses.   
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Figure 6-1 Collinear design for multi-channel Bragg cell. 
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Gray-scale manufacturing techniques have reduced higher-order diffraction of 

light for Fresnel lenses, or HOEs; and high-efficiency, dual-focus lenses are now 

available.58  In addition to the two-beam lens, an HOE Fourier transform lens might be 

designed to minimize the power lost to higher-order diffraction due to the multiple 

Bragg-cell channels.  Historically, the analysis of multi-channel, Bragg-cell beam 

forming processors has been for radar signal processing or beam finding.  The 

applicability to more complex receiver arrangements, such as those required for GPS, 

could be investigated.  For example, an HOE Fourier transform lens may also be applied 

to allow multi-channel Bragg-cell processing on other types of phased array antennas, 

rather than just linear placement of elements, and may improve the coverage needed for 

receiving signals from multiple satellites.  In addition, perhaps methods could be 

examined for keeping the number of antenna-array elements to a minimum while 

increasing the separation between AOA spots in the Fourier transform plane, for 

example, using redundancy at the Bragg cell.  

6.2.2 Waveguiding in Photorefractive Crystals 

Obviously, system size is a factor that must be considered for any practical system 

application.59  Originally the experimental system used in this research was designed for 

portability to other laboratories, and a 1.0¥0.5-meter optics bench was envisioned.  

However, a 1.0-meter f lens was eventually used to achieve the 6-millimeter depth-of-

focus requirement for the adaptive power limiter, and this ideas was abandoned.  The 

depth-of-focus limitation was determined to be more restrictive than the inherent 

resolution capability of the adaptive power limiter.  A long depth of focus is needed in a 
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bulk photorefractive power limiter unless an overlap of the resolvable spots at the Fourier 

transform plane can be tolerated by the overall system resolution.  Other approaches are 

self-focusing of the beam and beam confinement in the crystal by coupling the light into 

waveguides.  Waveguiding due to photorefractive effects has been demonstrated in 

crystals with external electric fields applied.52  These self-focusing effects might be 

optimized for the notch-filter application.  In addition the use of stacked waveguides, or 

fiber-optic bundles that also limit optical power intensity, could be considered. 

6.2.3 System Insertion Point 

The center frequency and bandwidth of Bragg cells vary depending on a particular 

A-O crystal type and design.  GPS satellites broadcast in a 1-2-GHz range, and a natural 

intermediate frequency for the GPS system is 173 MHz.  This is a convenient Bragg-cell 

operating frequency, but further down converting of the carrier frequency may be desired 

in order to obtain optimum Bragg-cell performance.  Any additional frequency 

conversion adds to the burden of inserting an acousto-optic RF interference reduction 

system into the communications receiver.  The broadband receiver design should be 

examined to determine the optimum insertion point for an A-O-based system.  Also, the 

Bragg-cell limitations with respect to signal levels and dynamic range are known and 

were not addressed here. 

 



Appendix A 
 

Useful Bragg Cell Formulae 

This appendix summarizes convenient formulae for Bragg-cell systems that were referred 

to constantly while working in the lab.  See the List of Symbols for identification of 

parameters. 

Bragg angle: 
 

Λ
=

⋅
= λ

υ
λα

a

af
 { A-1 }

  
The incident laser beam passing through a Bragg cell is deflected at an angle linearly 

proportional to the applied signal frequency.  Higher orders are usually suppressed, for 

higher orders multiply the right-hand side by the order number.   

 

Diffraction efficiency: 
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The light diffraction efficiency is proportional to acoustic power, material figure of merit, 

crystal geometry and is inversely proportional to the square of the wavelength l.  

 

Spot Position:  
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The position of the focused spot in the Fourier transform plane is the deflection angle 

multiplied by the lens focal length.   

 

Minimum resolvable deflection angle: 

 
D
λθ =∆ min  { A-4 }

 
 

 

Two wavefronts can be resolved if the tilt between them is one wavelength of light over 

the aperture diameter.  

 

Minimum resolvable spatial frequency: 

 
F

D
x λ=∆ min  { A-5 }

 
 

 

Two wavefronts focus with a distance between peaks of the minimum resolvable angle 

times the focal length.   

 

Minimum resolvable acoustic frequency: 

 
D

f a
a

υ
=∆ −min  { A-6 }

 
 

 

The minimum resolvable acoustic frequency is the lowest cycle that will span the 

aperture (D=ua/fa-min). 
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Total sweep angle: 

 

Ba

B
Λ

== λ
υ

λθ  { A-7 }

  
The Bragg cell has total angular sweep given by the optical wavelength over the acoustic 

bandwidth wavelength.   

 

Number of resolvable spots: 

 
λ

θ
θ
θ DN ==
min

 { A-8 }

  
The number of resolvable spots is the total scan angle divided by the minimum resolvable 

deflection angle. 

 

Time bandwidth product: 

 tBN ∆=  { A-9 }
  
The acoustic bandwidth times the Bragg-cell time aperture gives the number of 

resolvable spots. 

 

Multi-channel maximum deflection angle: 

 
d
λα =max  { A-10 }

  
The maximum diffraction angle for multi-channel device is the optical wavelength over 

the channel-to-channel spacing. 
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Multi-channel minimum resolvable angle: 

 
dn ⋅

= λα min  { A-11 }

 
 

 

The minimum resolvable deflection angle for multi-channel device is the optical 

wavelength over the width of all channels combined. 

 

Multi-channel number of resolvable AOA: 

 
ndn

d
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λ
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The number of resolvable angles of arrival is the maximum deflection angle divided by 

the minimum resolvable angle.   

 

Multi-channel phase difference between channels: 
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The phase difference between channels is proportional to the AOA and the distance 

between antenna receiver elements.  

 

Multi-channel, y-axis spatial period: 
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The spatial period in the y-axis is inversely proportional to the phase difference between 

channels.  

 

Multi-channel beam forming: 
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{ A-15 }

  
The AOA deflection is the optical wavelength divided by the spatial period, times the 

focal length of the lens.   



   

Appendix B 
 

Matlab Code 

B.1 Numerical Differential Equation Solver Collocation Method 

This appendix describes the Matlab collocation program and code used to solve the state 

variables found in Equation ( 4-38).  The Matlab reference file is the source used to write 

the code. 

1. Rewrite the problem as a first-order system and code in Matlab: see for example 

function dydx = mat33g1code(x, y) 

2. Code the Boundary Conditions Function: see for example function res = 

mat3gbbc 

3. Create an initial guess:  see for example function yinit = mat3binit(x,y) 

4. Apply the BVP solver: sol=bvp4c(@mat33code, @mat3bbc, solinit); 

 

%Commands used to call BVP4C to solve Y and find unknown parameter g 
xint=linspace(0,2.5673e+004,4096);  % solution space,  variable x  (approximately 2.3 
%mm width) 
solinit=bvpinit(linspace(0,2.5673e+004,4096), @mat3binit,  -4.8174e+000); % guesses 
%at solution 
sol=bvp4c(@mat33g1code, @mat3gbbc, solinit);      % output of BVP4c 
Sxint=bvpval(sol, xint);   %  evaluate the numerical solution for given linespace 
E3g1=Sxint(1,:).*2.8881e+003;   %EDb=2.8881e+003;  % solution for space charge 
%field 
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% Initialization function used in BVP4C 
function yinit = mat3binit(x,y) 
   % V/d*EDb)=4.8173 normalized applied electric field 
yinit = [4.8173 

0]; 
 
% Boundary condition function used in BVP4C 
function res = mat3gbbc(ya, yb, g) 
res = [ ya(2)-4.8173 
         yb(2)-4.8173 
         ya(1)+4.8174e+000]; 
 
% Boundary condition function used in BVP4C 
function dydx = mat33g1code(x, y) 
V = 3200;               % Applied Voltage 
H=.23;                % crystal height, voltage bias distance 
EDb= 2.8881e+003;     % Electric Field normalization parameter used in DelRe's 
%paper 
I0=1e-3;   % peak intensity 
s=1.06e-1;          % ionization cross section cm2/joule 
Beta=5.3333e-009;              % rate of thermal excitation 
Ib=0;    % background/control illumination 
Id=Beta/s;                % Dark Illumination 
kDb=1.1162e+005;     % normalization for all x values. 
xmax=.23*kDb;         % xmax = 61684.0   2^16 = 65536 
o=.115*kDb;   % Gaussian Beam offset from ground plane * 
%normalization 
a=25e-4*kDb;  % Radius of Gaussian Beam*kDb=1.1162e4 
Q=(1+I0/(Ib+Id)*exp(-((x-o)/a).^2));  % DelRe Equation (8) illumination term 
Qp=(-2.*(x-o)./a.^2.*exp(-((x-o)./a).^2).*I0./(Ib+Id));  % Derivative of Q 
% in the equation that follows, solving for y and y(2)=y(1)' and y(1) = y' so that y(2)=y' 
 
dydx=[  y(2)  
       y(1)+y(2).*y(1)+Qp./Q+Qp./Q.*y(2)-g./Q-2.*g./Q.*y(2)-g./Q.*y(2).*y(2)]; 
 
% Finish 
 
 
% Commands used for BVP4C to solve for Y when not solving for g 
xint=linspace(0,2.5673e+004,4096);  
solinit=bvpinit(linspace(0,2.5673e+004,4096), @mat3binit);  % guesses at solution 
sol=bvp4c(@mat33code, @mat3bbc, solinit);        % output of BVP4c 
Sxint=bvpval(sol, xint);     %  evaluate the numerical solution for given 
%linespace 
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E3=Sxint(1,:).*2.8881e+003; 
 
% Initialization function used in BVP4C 
function yinit = mat3binit(x,y) 
   % V/d*EDb)=4.8173 normalized applied electric field 
yinit = [   4.8173 

0]; 
 
% Boundary condition function used in BVP4C 
function res = mat3bbc(ya, yb) 
res = [ ya(1)-4.8173 
         yb(1)-4.8173 ]; 
 
% Boundary condition function used in BVP4C 
function dydx = mat33code(x, y) 
V = 3200;               % Applied Voltage 
H=.23;                % crystal height, voltage bias distance 
EDb= 2.8881e+003;     % Electric Field normalization parameter used in DelRe's 
%paper 
g = V/(H*EDb);              % gmin DelRe Equation (23) 
I0=1e-3;   % peak intensity 
s=1.06e-1;          % ionization cross section cm2/joule 
Beta=5.3333e-009;              % rate of thermal excitation 
Ib=0;    % background/control illumination time address  
Id=Beta/s;                % Dark Illumination 
kDb=1.1162e+005;     % normalization for all x values. 
xmax=.23*kDb;         % xmax = 61684.0   2^16 = 65536 
o=.115*kDb;   % Gaussian Beam offset from ground plane * 
%normalization 
a=25e-4*kDb;  % Radius of Gaussian Beam*kDb=1.1162e4 
Q=(1+I0/(Ib+Id)*exp(-((x-o)/a).^2));  % DelRe Equation (8) illumination term 
Qp=(-2.*(x-o)./a.^2.*exp(-((x-o)./a).^2).*I0./(Ib+Id));  % Derivative of Q 
% in the equation that follows, solving for y and y(2)=y(1)' and y(1) = y' so that y(2)=y' 
dydx=[  y(2)   
       y(1)+y(2).*y(1)+Qp./Q+Qp./Q.*y(2)-g./Q-2.*g./Q.*y(2)-g./Q.*y(2).*y(2)]; 

B.2 Digital Wideband Receiver Simulation  

The input signal is a sequence of discrete time samples representing the GPS Pseudo-

random Noise (PN) code.  It is generated using a random number generator.  For 

purposes of this model the PN code is 800 bits long, which represents 40 mseconds.  The 
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GPS P-code clock rate is 10.23 Mbps and the bandwidth is approximately 20 MHz.  The 

PN code is correlated in the receiver to provide gain, which is part of the spread-spectrum  

architecture.  The complete sequence in this simulation is 1600 bits long. The PN code is 

positioned somewhere within the 1600 bits, and the rest of the sequence is filled with 

random ±1s.  Note: 10.23e6/800 bits gives 78 msec, thus each code bit was two bins long 

due to Nyquist sampling.  The PN code is mixed with time-varying interference 

represented by sinusoidal functions.  The sinusoids must be generated using frequencies 

that can be resolved by the sample space, or the result of the Fourier transform is 

broadband noise that cannot be notch filtered.  It is interesting to note that it is easiest to 

create this interference sequence using frequency components in a Fourier series, such as 
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and then apply it to the system as a time signal.  However, the ultimate purpose of the 

system is to determine the frequency components of the time signal, so this approach 

“stacks the deck,” so to speak.  However, it would be difficult to think of creating these 

narrow-band, single-frequency, time-correlated sequences in any other way.  Note in 

Equation { B-1 }that N is the number of bins in the sequence, and D is the differential 

time, and the radian frequency, w = 2pk/(ND), is later determined by the DFT operation.  

The fast Fourier transform simply determines the frequency component, 1/(ND), that was 

used to create the time signal.  The same situation applies in the next section.  AOA time 

sequences are needed that have space-correlated phase delay.  In the real world the phase 

differences are due to the spatial location of the RF source, and in order to create 
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sequences for the digital simulation that work, AOA information is used to generate the 

signal, then the AOA components are conveniently determined (and extracted) using the 

Fourier transform.   

The length of the tapped delay line is chosen to correspond to the Bragg-cell 

length, or time aperture.  The Bragg-cell time aperture was chosen to obtain 0.05% 

frequency resolution, that is, 100 kHz resolution for the 20 MHz signal bandwidth.  The 

number of resolvable frequencies, or spots, for a Bragg cell is given by N=BW∏Df, 

where BW is the signal bandwidth; Df is the frequency resolution; and in this case, N= 

200 spots.  The time aperture of the Bragg cell is given by T=N∏B=10 msec.  Note that 

one cycle of the lowest resolvable frequency fills the Bragg-cell time aperture; that is, 

1∏10 msec = 1 kHz, and one cycle of the highest resolvable frequency fills two bits of the 

sequence.  For 200 spots, the number of bits representing the Bragg cell is 400 (20¥106 ∏ 

100¥103¥2 bits ∏ resolvable spots).   

As the bits are fed into the tapped delay line, a Fourier transform is performed.  

The Fourier transform is filtered according to the power-limiting model.  Two models 

were used: one preserved signal phase and clipped amplitude while the other simply set 

the value to zero. No difference was seen between these two types of filters. 

B.2.1 Temporal Model 

% This Matlab code was inspired from IDL source code written by Sung Choi, Gerald 
%Falen, and also reference [8] 
%constants 
Nt=1600;    %total length of signal 
Nc=768;  %size of code 
Nc2=2; %length of PN code bit 
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Nc1=Nc/Nc2; 
offset=50;  %amount of offset...Don't exceed 512 
Nf=256;  %size of Bragg cell, must go evenly into Nt, the signal window. 
Np=1;  %number of interference sinusoids, must match Ap & Tp dimension 
Ap(1:100)=100;  %amplitude of interference 
AAA=linspace(1,100,100);   % Used for generating 100 frequencies  
Tp=3.9608e+000; 
%Tp=[200./AAA];  %Period of interference generated by AAA. Tp is 200/1, 

%200/2, 200/3...200/100,  
X0=.2;       %lower limit of clipping threshold used for nonlinear function 
DR=120; 
X1=10^(DR/20); %upper limit of clipping threshold used for nonlinear function 
 
%Create a random code will be added to this sinusoidal signal. Note that each bit code is 
%expanded to occupy NC2 time slots. 
rand('state',1);   %set random generator state to #1. This is needed to repeat code, 
%otherwise it changes for every call.  
code1=(2*(round(rand(1,Nc1))))-1;   %random signal generated, round generates ones 
%and zeros. 
code(1:Nc)=0; 
for i=1:Nc1   %loop to create code that has 4 bits length  
   code((i*Nc2)-(Nc2-1):i*Nc2)=code1(i);  %This is the PN code used to correlate signal 
   end 
%Create bit noise    
rand('state',2); 
bitnoise1=(2*(round(rand(1,offset))))-1;   
rand('state',3); 
bitnoise2=(2*(round(rand(1,(Nt-Nc-offset+1)))))-1;   
    
%add code and bitnoise to Signal: code is positioned @ offset   
Signal(1:Nt)=0; 
Signal(1:offset-1)=bitnoise1(1:offset-1); 
Signal(offset:offset+(Nc-1))=code(1:Nc); 
Signal(offset+Nc:Nt)=bitnoise2(1:Nt-Nc-offset+1); 
 
%Add noise to Signal array, with length Nt, having Np=4 sinusoidal signals of amplitude 
%Ap and period Tp. 
%NoisySignal=Signal; 
%for i=1:Np, NoisySignal=NoisySignal+Ap(i)*cos(2*pi/Tp(i)*(0:(Nt-1))-pi./8*i); 
%Sinusoid is created using cos(2Pi*x/period). 
%end 
NoisySignal=awgn(Signal,-15, 'measured'); %new toolbox had AWGN function 
figure(1) 
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subplot(2,3,1),   plot(NoisySignal(1:Nt)),  title('Noisy Signal'), AXIS([0 Nt 
min(NoisySignal) max(NoisySignal)])  
 
%To represent the Bragg cell being filled, a vector, X, having Nc zeros at front and end 
%and total length 2*Nf+Nt is  
%created, i.e. the signal is centered between 2*Nf amount of zeros.  The Bragg cell 
%vector is filled sequentially with this  
%vector, so that to start with it is all zeros except for the 1st bit, then one-bit-by-one-bit 
%the Bragg cell is filled with the signal  
%until it is filled with zeros on the other end except for the last bit. 
X(1:Nt+2*Nf)=0; 
X(Nf/2:Nf/2+Nt-1)=NoisySignal; 
 
for i=1:(Nt+Nf-1), 
   BraggCell(1:Nf)=X(i:i+Nf-1);  %load Bragg cell with portion of the signal equivalent 
%to transit time. 
   Y=fft(BraggCell)./Nf; %take Fourier transform of Bragg cell signal. 
   Yout=nonlinear(Y, X0, X1); %call to nonlinear filter function 
DetectorFiltered(i)=sum(Yout);  %sum of Fourier transform acts as detector, 
%i.e. a signal integrator. 
DetectorNoFilter(i)=sum(Y); 
Maxmag(i)=max(Y); %check out the maximum magnitude of the input signal. 
end 
SizeD=length(DetectorFiltered); 
subplot(2,3,3),  plot(1:SizeD,real(DetectorFiltered))  
AXIS([0 Nf+Nt min(real(DetectorFiltered)) max(real(DetectorFiltered))]), title('Summed 
Output: Filtered') 
subplot(2,3,2),   plot(1:SizeD,real(DetectorNoFilter)) 
AXIS([0 Nf+Nt min(real(DetectorNoFilter)) max(real(DetectorNoFilter))]), 
title('Summed Output: Unfiltered') 
 
 
%The following plots the frequency components of the summed unfiltered signal. 
Fourier=fft(NoisySignal(501:(500+Nf))); 
 
N=length(Fourier); 
%Fourier(1)=0; 
Power=(abs(Fourier(1:N/2+1)).^2)/(max(abs(Fourier))^2); 
nyquist = 20/2; 
freq = (1:N/2+1).*(nyquist/(N/2)); 
period = 1./freq; 
subplot(2,3,4), plot(freq(1:N/2+1),Power(1:N/2+1),'*') 
axis([0 nyquist 0 max(Power)]) 
title('Power Spectrum'), xlabel('MHz') 
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%The following "for loop" correlates the code signal with the system output.  
%The correlation function output is a 2X2 matrix called Dummyarray. (The 
%autocorrelation coefficient is at indices  
%(1,1 & 2,2) correlation coefficient is at indices (1,2 & 2,1). 
%The correlation coefficient at index (1,2) is saved in an array called Xcoef. 
%Correlation then steps up one unit, so that the code signal is correlated with the original 
%signal + one bit.  
%This process continues until the whole signal has been correlated (up to Nt-Nc index). 
%The correlation coefficients are then plotted to indicate a peak. 
 
for i = 1:(Nf+Nc-1), 
   Dummyarray=corrcoef(DetectorFiltered(i:i+(Nc-1)),code(1:Nc)); 
   Dummyarray2=corrcoef(DetectorNoFilter(i:i+(Nc-1)),code(1:Nc)); 
   Xcoef(i)=Dummyarray(2,1); 
   Xcoef2(i)=Dummyarray2(2,1); 
   clear Dummyarray; 
   clear Dummyarray2; 
   end 
   subplot(2,3,6), plot(1:(Nf+Nc-1),real(Xcoef(1:(Nf+Nc-1)))) 
   title('Correlation Filtered') 
   subplot(2,3,5), plot(1:(Nf+Nc-1),real(Xcoef2(1:(Nf+Nc-1)))) 
   title('Correlation Unfiltered') 
 
   figure(5) 
   plot((1:Nf),fftshift(abs(Fourier)), '*'); 
 
%nonlinear function 
function Yout=nonlinear(Y, X0, X1) 
%nonlinear   The nonlinear transversal filter.  
%nonlinear(Y, X0, X1)  Y is the Fourier transform of a signal, X0 is lower threshold 
%limit, X1 is upper threshold limit. 
%Logic is used to compare the input values and map them to the appropriate output 
%value.  
%Maps one-to-one until reaching a value X0. Then maps as X0/Y i.e. 1/Y attenuation 
%occurs until input exceeds X1 value. 
%The leakage component maps one to one thereafter, but is diminished by the value 1-
X0^2/X1^2. 
 
N=length(Y);    %determine length of vector Y. 
for i=1:N           %Logic uses "if loop" to compare input and map to appropriate output. 
if abs(Y(i)) <= X0 
   Yout(i)=Y(i);  %maps one to one 
 elseif abs(Y(i)) <= X1 
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   Yout(i) = X0^2.*Y(i)./((abs(Y(i))).^2); %nonlinear mapping X0/Y(i): the bigger 
Y(i) gets the smaller Yout(i), due to polarizer. 
else  
   Yout(i) = (X0^2/X1^2).*Y(i);  %leakage component maps one to one, but 
diminished by 1-X0^2/X1^2  
end 
end 

B.3 Digital Wideband Receiver Simulation:    
 Spatial and Temporal Model 

% This mixes a signal on-axis, and a Noise source off-axis.   
% This approach did not work with just clipping and summing all points on a 2-D array  
% The only way that I could get correlation with a true broad band interferer was to  
% isolate the DC row in the DFT corresponding to the Signal AOA and use it by itself.  
% In other words, clipping and then summing all points in the DFT does not work for this 
% model, because the total noise was too great. 
% constants: 
Nt=1024;    %total length of signal 
Nc=512;  %size of code 
Nc2=2; %length of PN code bit 
Nc1=Nc/Nc2; 
offset=50;    %amount of offset...Don't exceed 512 
Nf=256;  %size of Bragg cell, must go evenly into Nt, the signal window. 
Np=1;  %number of interference sinusoids, must match Ap & Tp dimension 
Rt=16;   % Number of Bragg Cell channels; i.e. Phased Array Receiver 
Ap(1:100)=100;  %amplitude of interference 
AAA=linspace(1,Nf,Nf); % Used for generating 100 frequencies  
Tp=16; 
%Tp=3.9608e+000; 
Tp2=13.356; 
AOA=4;  % 0=DC, 1 = first resolvable AOA, 2 = second resolvable AOA, ... Rt/2 = 
%highest resolvable AOA. 
AOAnoise=6; % see above, this is used for the noise. 
%Tp=[Nf./AAA(32)];        %Period of interference generated by AAA. 
%Tp is 200/1, 200/2, 200/3...200/100,  
X0=0.003;      %lower limit of clipping threshold used for nonlinear function 
DR=600; 
X1=10^(DR/20);  %upper limit of clipping threshold used for nonlinear 
%function 
% End Constants 
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% Generation of PN Signal (code) vector (+30 dB AWGN representing channel goes 
%here). 
% Note that each bit code is expanded to occupy NC2 time slots. 
rand('state',2);   %set random generator state to #1. This is needed to repeat code, 
%otherwise it changes for every call.  
code1=(2*(round(rand(1,Nc1))))-1;   %random signal generated, round generates ones 
%and zeros, 2*#-1 gives +/- 1 values. 
code(1:Nc)=0;   % used to expand code to a length determined by the constant Nc2 
for i=1:Nc1   %loop to create code that has Nc2 bits length  
   code((i*Nc2)-(Nc2-1):i*Nc2)=code1(i);  %This is the PN code used to correlate signal 
   end 
%Create bit noise that fills the space between the shorter code length and total signal 
%length (we are looking for the position of the code as a test of the system).    
rand('state',3); 
bitnoise1=(2*(round(rand(1,offset))))-1;   
rand('state',4); 
bitnoise2=(2*(round(rand(1,(Nt-Nc-offset+1)))))-1;   
    
%add code and bitnoise to Signal: code is positioned @ offset   
Signal(1:Nt)=0; 
Signal(1:offset-1)=bitnoise1(1:offset-1); 
Signal(offset:offset+(Nc-1))=code(1:Nc); 
Signal(offset+Nc:Nt)=bitnoise2(1:Nt-Nc-offset+1); 
%Signal=awgn(Signal,10,'measured'); 
 
 
 
% The transformed domain has 4 quadrants, the center is the nyquist value of each 
%dimension.  How is this value applied? 
% The position of information in quadrants determine the +/- direction of the AOA. 
% Assume that DC term + 7 AOA is one quadrant and Nyquist + 7 AOA is the other 
%quadrant, this give Length/2 for each quadrant. 
% Add phase to the broadband signal proportional to angle of arrival (AOA). 
% The (AOA) phase is unique for each frequency (or wavelength) so the signal must be 
%constructed in the  
% frequency domain.  There are Rt channels in the Bragg cell.  Since each channel 
%corresponds to a resolvable AOA 
% in the Fourier transform plane, then the AOA information will be constructed there. 
%Remember that you have to 
% include the negative and positive frequencies (complex conjugate). 
SignalFreq=fft(Signal); 
SignalFreqP(1:Rt,1:Nt)=0; 
SignalFreqP(AOA+1,1:Nt/2)=SignalFreq(1:Nt/2).*Rt; 
SignalFreqP(Rt-(AOA-1),(Nt/2+1):Nt)=SignalFreq((Nt/2+1):Nt).*Rt; 
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% The following commented lines is an alternate approach, where the nyquist term is 
%included with the DC term. 
% SignalFreqP(AOA+1,1:(Nt/2+1))=SignalFreq(1:(Nt/2+1)).*Rt; 
% SignalFreqP((Rt-(AOA-1)),(Nt/2+2):Nt)=SignalFreq((Nt/2+2):Nt).*Rt; 
 
% Take signal back to time domain 
SignalP=ifft2(SignalFreqP);  % inverse to time domain 
% SignalRecovered=SignalP(1,:)+(conj(SignalP(Rt,:)).*SignalP(2,:)); 
 
% Create angle of arrival noise signal 
rand('state',3);   %set random generator state to #1. This is needed to repeat code, 
%otherwise it changes for every call.  
Noise=(2*(round(rand(1,Nt))))-1;   %random signal generated, round generates ones and 
%zeros, 2*#-1 gives +/- 1 values. 
Noise=awgn(Noise,-55,'measured'); 
NoiseFreq=fft(Noise); 
NoiseFreqP(1:Rt,1:Nt)=0; 
NoiseFreqP(AOAnoise+1,1:Nt/2)=NoiseFreq(1:Nt/2).*Rt; 
NoiseFreqP(Rt-(AOAnoise-1),(Nt/2+1):Nt)=NoiseFreq((Nt/2+1):Nt).*Rt; 
NoiseP=ifft2(NoiseFreqP); 
 
%combine signal and noise 
NoisySignalP=real(SignalP)+real(NoiseP); 
NoisySignalFreqP=fft2(NoisySignalP); 
 
 
%Bragg: To represent the Bragg cell being filled, a vector, X, having Nc zeros at front 
%and end and total length 2*Nf+Nt is  
%created, i.e. the signal is centered between 2*Nf amount of zeros.  The Bragg cell 
%vector is filled sequentially with this  
%vector, so that to start with it is all zeros except for the 1st bit, then one-bit-by-one-bit 
%the Bragg cell is filled with the signal  
%until it is filled with zeros on the other end except for the last bit. 
X(1:Rt,1:Nt+2*Nf)=0; 
for i=1:Rt 
X(i,Nf/2:Nf/2+Nt-1)=NoisySignalP(i,1:Nt); 
end 
 
for i=1:(Nt+Nf-1), 
   for j=1:Rt 
    BraggCell(j,1:Nf)=X(j,i:i+Nf-1);  %load Bragg cell with portion of the signal 
%equivalent to transit time. 
end 
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    Y=fft2(BraggCell)./Nf./Rt; %take Fourier transform of Bragg cell signal. 
       Yout=nonlinear2(Y, X0, X1); %call to nonlinear filter function 
 
DetectorFiltered(i)=sum(sum(Yout));  %sum of Fourier transform acts as 
%detector, i.e. a signal integrator. 
DetectorNoFilter(i)=sum(sum(Y)); 
Maxmag(i)=max(max(Y)); %check out the maximum magnitude of the input signal. 
end 
SizeD=length(DetectorFiltered); 
subplot(2,3,3),  plot(1:SizeD,real(DetectorFiltered))  
AXIS([0 Nf+Nt min(real(DetectorFiltered)) max(real(DetectorFiltered))]), title('Summed 
Output: Filtered') 
subplot(2,3,2),   plot(1:SizeD,real(DetectorNoFilter)) 
AXIS([0 Nf+Nt min(real(DetectorNoFilter)) max(real(DetectorNoFilter))]), 
title('Summed Output: Unfiltered') 
 
 
%The following "for loop" correlates the code signal with the system output.  
%The correlation function output is a 2X2 matrix called Dummyarray. (The 
%autocorrelation coefficient is at indices  
%(1,1 & 2,2) correlation coefficient is at indices (1,2 & 2,1). 
%The correlation coefficient at index (1,2) is saved in an array called Xcoef. 
%Correlation then steps up one unit, so that the code signal is correlated with the 
%original signal + one bit.  
%This process continues until the whole signal has been correlated (up to Nt-Nc index). 
%The correlation coefficients are then plotted to indicate a peak. 
 
for i = 1:(Nf+Nc-1), 
   Dummyarray=corrcoef(DetectorFiltered(i:i+(Nc-1))/Rt,code(1:Nc)); 
   Dummyarray2=corrcoef(DetectorNoFilter(i:i+(Nc-1))/Rt,code(1:Nc)); 
   Xcoef(i)=Dummyarray(2,1); 
   Xcoef2(i)=Dummyarray2(2,1); 
   clear Dummyarray; 
   clear Dummyarray2; 
   end 
   subplot(2,3,6), plot(1:(Nf+Nc-1),real(Xcoef(1:(Nf+Nc-1)))) 
   title('Correlation Filtered') 
   subplot(2,3,5), plot(1:(Nf+Nc-1),real(Xcoef2(1:(Nf+Nc-1)))) 
   title('Correlation Unfiltered') 
% end 
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